Hypothesis Testing Calculator

$H_o$:
$H_a$: μ μ₀
$n$ =   $\bar{x}$ =   =
$\text{Test Statistic: }$ =
$\text{Degrees of Freedom: } $ $df$ =
$ \text{Level of Significance: } $ $\alpha$ =

Type II Error

$H_o$: $\mu$
$H_a$: $\mu$ $\mu_0$
$n$ =   σ =   $\mu$ =
$\text{Level of Significance: }$ $\alpha$ =

The first step in hypothesis testing is to calculate the test statistic. The formula for the test statistic depends on whether the population standard deviation (σ) is known or unknown. If σ is known, our hypothesis test is known as a z test and we use the z distribution. If σ is unknown, our hypothesis test is known as a t test and we use the t distribution. Use of the t distribution relies on the degrees of freedom, which is equal to the sample size minus one. Furthermore, if the population standard deviation σ is unknown, the sample standard deviation s is used instead. To switch from σ known to σ unknown, click on $\boxed{\sigma}$ and select $\boxed{s}$ in the Hypothesis Testing Calculator.

$\sigma$ Known $\sigma$ Unknown
Test Statistic $ z = \dfrac{\bar{x}-\mu_0}{\sigma/\sqrt{{\color{Black} n}}} $ $ t = \dfrac{\bar{x}-\mu_0}{s/\sqrt{n}} $

Next, the test statistic is used to conduct the test using either the p-value approach or critical value approach. The particular steps taken in each approach largely depend on the form of the hypothesis test: lower tail, upper tail or two-tailed. The form can easily be identified by looking at the alternative hypothesis (H a ). If there is a less than sign in the alternative hypothesis then it is a lower tail test, greater than sign is an upper tail test and inequality is a two-tailed test. To switch from a lower tail test to an upper tail or two-tailed test, click on $\boxed{\geq}$ and select $\boxed{\leq}$ or $\boxed{=}$, respectively.

Lower Tail Test Upper Tail Test Two-Tailed Test
$H_0 \colon \mu \geq \mu_0$ $H_0 \colon \mu \leq \mu_0$ $H_0 \colon \mu = \mu_0$
$H_a \colon \mu $H_a \colon \mu \neq \mu_0$

In the p-value approach, the test statistic is used to calculate a p-value. If the test is a lower tail test, the p-value is the probability of getting a value for the test statistic at least as small as the value from the sample. If the test is an upper tail test, the p-value is the probability of getting a value for the test statistic at least as large as the value from the sample. In a two-tailed test, the p-value is the probability of getting a value for the test statistic at least as unlikely as the value from the sample.

To test the hypothesis in the p-value approach, compare the p-value to the level of significance. If the p-value is less than or equal to the level of signifance, reject the null hypothesis. If the p-value is greater than the level of significance, do not reject the null hypothesis. This method remains unchanged regardless of whether it's a lower tail, upper tail or two-tailed test. To change the level of significance, click on $\boxed{.05}$. Note that if the test statistic is given, you can calculate the p-value from the test statistic by clicking on the switch symbol twice.

In the critical value approach, the level of significance ($\alpha$) is used to calculate the critical value. In a lower tail test, the critical value is the value of the test statistic providing an area of $\alpha$ in the lower tail of the sampling distribution of the test statistic. In an upper tail test, the critical value is the value of the test statistic providing an area of $\alpha$ in the upper tail of the sampling distribution of the test statistic. In a two-tailed test, the critical values are the values of the test statistic providing areas of $\alpha / 2$ in the lower and upper tail of the sampling distribution of the test statistic.

To test the hypothesis in the critical value approach, compare the critical value to the test statistic. Unlike the p-value approach, the method we use to decide whether to reject the null hypothesis depends on the form of the hypothesis test. In a lower tail test, if the test statistic is less than or equal to the critical value, reject the null hypothesis. In an upper tail test, if the test statistic is greater than or equal to the critical value, reject the null hypothesis. In a two-tailed test, if the test statistic is less than or equal the lower critical value or greater than or equal to the upper critical value, reject the null hypothesis.

Lower Tail Test Upper Tail Test Two-Tailed Test
If $z \leq -z_\alpha$, reject $H_0$. If $z \geq z_\alpha$, reject $H_0$. If $z \leq -z_{\alpha/2}$ or $z \geq z_{\alpha/2}$, reject $H_0$.
If $t \leq -t_\alpha$, reject $H_0$. If $t \geq t_\alpha$, reject $H_0$. If $t \leq -t_{\alpha/2}$ or $t \geq t_{\alpha/2}$, reject $H_0$.

When conducting a hypothesis test, there is always a chance that you come to the wrong conclusion. There are two types of errors you can make: Type I Error and Type II Error. A Type I Error is committed if you reject the null hypothesis when the null hypothesis is true. Ideally, we'd like to accept the null hypothesis when the null hypothesis is true. A Type II Error is committed if you accept the null hypothesis when the alternative hypothesis is true. Ideally, we'd like to reject the null hypothesis when the alternative hypothesis is true.

Condition
$H_0$ True $H_a$ True
Conclusion Accept $H_0$ Correct Type II Error
Reject $H_0$ Type I Error Correct

Hypothesis testing is closely related to the statistical area of confidence intervals. If the hypothesized value of the population mean is outside of the confidence interval, we can reject the null hypothesis. Confidence intervals can be found using the Confidence Interval Calculator . The calculator on this page does hypothesis tests for one population mean. Sometimes we're interest in hypothesis tests about two population means. These can be solved using the Two Population Calculator . The probability of a Type II Error can be calculated by clicking on the link at the bottom of the page.

Normality Calculator

Use this normality test calculator to easily assess if the normality assumption can be applied to your data by using a battery of mis-specification tests. Currently supports: Shapiro-Wilk test / Shapiro-Francia test (n 50), Anderson-Darling test, Jarque & Bera test, Cramer-von Mises test, d'Agostino-Pearson test. Plots a histogram of the data with a normal distribution overlay.

  • What is a normality test?
  • Interpreting the outcome of tests for normality
  • Supported tests

The Shapiro-Wilk test / Shapiro-Francia test

The cramer-von mises test, the anderson-darling test, the d'agostino-pearson test, the jarque & bera test.

  • Practical examples

    What is a normality test?

A test of normality in statistics and probability theory is used to quantify if a certain sample was generated from a population with a normal distribution via a process that produces independent and identically-distributed values. Normality tests can be based on the 3-rd and 4-th central moments (skewness and kurtosis), on regressions/correlations stemming from P-P and Q-Q plots or on distances defined using the empirical cumulative distribution functions (ecdf). The Null hypothesis can generally be stated as: "data can be modelled using the normal distribution", but since some normality tests also check if the data is independent and identically distributed (IID) a low p-value from these tests may be either due to a non-normal distribution or due to the IID assumption not holding. Separate tests for independence and heterogeneity can be performed to rule out those possibilities.

Tests for normality like the Shapiro-Wilk are useful since many widely used statistical methods work under the assumption of normally-distributed data and may require alteration in order to accommodate non-normal data. Using a statistical test designed under the assumption of Normal or NIID data when the data is not normal renders the statistical model inadequate and the results meaningless, regardless if one is dealing with experimental or observational data (regressions, correlations, etc.).

Normality tests such as those implemented in our normality test calculator should be run on the full data without removing any outliers, unless the reason for the outlier is known and its removal from the analysis as a whole can be readily justified (e.g. erroneously recorded data, data from source later proven to be unreliable, etc.).

    Interpreting the outcome of tests for normality

The outcomes generated by our normality calculator consist of the p-value from each test and the test statistic (e.g. W, JB, K 2 ). A lower p-value is a stronger signal for a discrepancy. Conventionally values under 0.05 are considered strong evidence for departure from normality (or IID, for some tests). Since the null is that the data is normal, the alternative is that it is not normal, but note that these tests do not point to a particular alternative distribution.

However, the opposite is not necessarily true: a high p-value, say 0.3, might be due to the low sensitivity of the test relative to the number of data points you have entered and the type of distribution. That said, with a sufficiently large sample size a high p-value can be treated as evidence for lack of discrepancy. See "Supported Tests" below for a brief discussion on the relative sensitivity of some of the tests.

With smaller sample sizes and/or distributions close to the normal it is expected to see some tests detect a departure from normality (very low p-values) while others show much higher p-values. This is most likely due to different sensitivity of the various tests towards different types and sizes of departures. If even a single mis-specification test results in a low p-value the normality assumption should be reconsidered , usually through re-specification. Switching to non-parametric tests is generally not recommended as it leads to loss of specificity and thus to more vague statistical inferences.

    Supported tests

This online normality calculator currently supports the following tests: Shapiro-Wilk / Shapiro-Francia, Anderson-Darling, Cramer-von Mises, d'Agostino-Pearson and the Jarque & Bera test. The following tests are not supported since they have significantly inferior sensitivity: Kolmogorov-Smirnov test, Ryan-Joiner test, Lilliefors-van Soest test.

While most who want to check their data for normality would search for the Shapiro-wilk test online, Mbah & Paothong (2014) [1] demonstrate via a comparison of several of the most-widely used tests across nine of the most-popular tests for normality that the Shapiro-Francia test is generally the most powerful, followed by the Shapiro-Wilk test. The Anderson Darling test is most sensitive under certain conditions, followed by the D’Agostino and Pearson. The Jarque-Bera test outperforms all against several distributions but with considerably high sample sizes (hundreds of data points).

More on each of the supported tests below.

The Shapiro-Wilk test is a regression/correlation-based test using the ordered sample. It results in the W statistic which is scale and origin invariant and can thus test the composite null hypothesis of normality. It was devised in 1965 by Samuel Shapiro and Martin Wilk who tabulated linear coefficients for computing W for samples of up to 50 data points [2] . The test is consistent against all alternatives.

Shapiro in collaboration with Francia proposed an extension of the method for handling samples with more than 50 data points in 1972 [3] : the Shapiro-Francia test, which is what our Shapiro-Wilk test calculator uses automatically if you supply it with more than 50 data points. Some people incorrectly refer to this test as the Shapiro-Wilk test, but it is different and in fact performs better than the Shapiro-Wilk test as it is more sensitive against most distributions even for sample sizes smaller than 50 [1] . In computing the W statistic we employ the Royston method [4] with a maximum sample size of 5,000.

The test assumes a random sample and thus a violation of the IID assumption may result in a low p-value even if the underlying distribution is normal, therefore additional tests for independence and heterogeneity are recommended if only the Shapiro-Wilk or Shapiro-Francia test results in a p-value below the desired significance threshold.

The Cramer-von Mises goodness-of-fit test is based on the empirical distribution and an ordered statistic [5,6] . It is distribution-free (can be used for other distributions as well) omnibus test alternative to the Kolmogorov-Smirnov test (also ecdf-based). The p-value is based on the largest discrepancy between the empirical distribution and the hypothetical (normal, in this case) distribution.

In terms of power against commonly-encountered alternatives it doesn't shine compared to the rest of the test in our goodness-of-fit calculator, but it is still widely used.

The Anderson-Darling normality test [7] is a modification of the Cramer-von Mises approach and is thus a distance-test based on the empirical cumulative distribution function and distribution-free in its generic form. Compared with the Cramer–von Mises distance, the Anderson–Darling distance places more weight on observations in the tails of the distribution. It shows decent sensitivity against a variety of distributions, most notably the Laplace and Uniform distribution.

The d'Agostino-Pearson test a.k.a. as the D'Agostino's K-squared test is a normality test based on moments [8] . More specifically, it combines a test of skewness and a test for excess kurtosis into an omnibus skewness-kurtosis test which results in the K 2 statistic. Due to its reliance on moments this test is generally less powerful than the SW/SF tests above as it ignores not just the dependence between the moments themselves, but also any existing higher-order moments making it lose all power if a distribution is non-normal but shows little deviation in terms of skewness and kurtosis. However the test has really good power against data from a uniform distribution which is why we have included it.

The K 2 statistic is only approximately Χ 2 -distributed due to the dependence between the two moments used so p-values may in fact be rough approximations at small sample sizes.

The Jarque-Bera test [9] is another normality test based on moments our normality calculator supports. It is one of the simplest, combining the skewness and kurtosis into a single JB statistic which is asymptotically Χ 2 distributed. This asymptotic property is why it performs poorly with small sample sizes, but can be the most sensitive test against a number of alternatives such as the uniform, logistic, Laplace and t-distribution given the sample size is in the hundreds or small thousands.

The Jarque-Bera test may have zero power to detect departures towards distributions with 0 skewness and kurtosis of 3 (excess kurtosis of 0) like the Tukey λ distribution for certain values of λ.

    Practical examples

Let us see how the normality test calculator works in practice. Clicking on this link will reload the page with a set of example data in the tool and the results from the battery of normality tests supported. It should look something like so (the histogram was generated in an external tool):

normality tests example

As we can see the data resembles normal, but it has a rather heavy right tail and two of the tests: the Shapiro-Francia and the Anderson-Darling are sensitive enough to infer this from the limited sample size. The Cramer-von Mises test with a p-value of 0.075 is a close third. Given these statistics we have more than enough evidence to rule out normality for most practical purposes and to seek a different distribution which more appropriately fits the empirical data. We might also want to check the independence and heterogeneity of the data.

    References

1 Mbah A.K. & Paothong A. (2014) "Shapiro-Francia test compared to other normality test using expected p-value", Journal of Statistical Computation and Simulation , 85:3002-3016; DOI: 10.1080/00949655.2014.947986

2 Shapiro S.S. & Wilk M.B. (1965) "An analysis of variance test for normality (complete samples)", Biometrika , 52:591–611

3 Shapiro S.S. & Francia R.S. (1972) "An approximate analysis of variance test for normality", Journal of the American Statistical Association , 67:215–216.

4 Royston P. (1993) "A Pocket-Calculator Algorithm for the Shapiro-Francia Test for Normality - An Application to Medicine", Statistics in Medicine , 12(2):181-184; DOI: 10.1002/sim.4780120209

5 Cramer H. (1928) "On the composition of elementary errors" Skandinavisk Aktuarietidskrift , 11:13–74, 141–180

6 von Mises R. (1931) "Wahrscheinlichkeitsrechnung und Ihre Anwendung in der Statistik und Theoretischen Physik" Julius Springer

7 Anderson T.W. & Darling D.A. (1954) "A Test of Goodness of Fit", Journal of the American Statistical Association 49:765-769

8 D'Agostino R.B., Pearson E.S. (1973) "Tests for Departure from Normality", Biometrika 60:613-622.

9 Jarque C.M., Bera A.K. (1987) "A test for normality of observations and regression residuals" International Statistical Review 55(2):163–172

Cite this calculator & page

If you'd like to cite this online calculator resource and information as provided on the page, you can use the following citation: Georgiev G.Z., "Normality Calculator" , [online] Available at: https://www.gigacalculator.com/calculators/normality-test-calculator.php URL [Accessed Date: 29 Aug, 2024].

Our statistical calculators have been featured in scientific papers and articles published in high-profile science journals by:

springer

The author of this tool

Georgi Z. Georgiev

     Statistical calculators

hypothesis testing normal distribution calculator

  • Calculators
  • Descriptive Statistics
  • Merchandise
  • Which Statistics Test?

P Value from Z Score Calculator

This is very easy: just stick your Z score in the box marked Z score, select your significance level and whether you're testing a one or two-tailed hypothesis (if you're not sure, go with the defaults), then press the button!

If you need to derive a Z score from raw data, you can find a Z test calculator here .

Z score:

Enter your z score value, and then press the button.

Additional Z Statistic Calculators

If you're interested in using the z statistic for hypothesis testing and the like, then we have a number of other calculators that might help you.

Z-Test Calculator for a Single Sample Z-Test Calculator for 2 Population Proportions Z Score Calculator for a Single Raw Value (Includes z from p )

hypothesis testing normal distribution calculator

P-value Calculator

Please provide any one value below to compute p-value from z-score or vice versa for a normal distribution.

Z-score  
P-value (x<Z, left tail)
P-value (x>Z, right tail)
P-value (0 to Z or Z to 0, from center)
P-value (-Z<x<Z, between)
P-value (x<-Z or x>Z, two tails)

A p-value (probability value) is a value used in statistical hypothesis testing that is intended to determine whether the obtained results are significant. In statistical hypothesis testing, the null hypothesis is a type of hypothesis that states a default position, such as there is no association among groups or relationship between two observations. Assuming that the given null hypothesis is correct, a p-value is the probability of obtaining test results in an experiment that are at least as extreme as the observed results. In other words, determining a p-value helps you determine how likely it is that the observed results actually differ from the null hypothesis.

The smaller the p-value, the higher the significance, and the more evidence there is that the null hypothesis should be rejected for an alternative hypothesis. Typically, a p-value of ≤ 0.05 is accepted as significant and the null hypothesis is rejected, while a p-value > 0.05 indicates that there is not enough evidence against the null hypothesis to reject it.

Given that the data being studied follows a normal distribution, a Z-score table can be used to determine p-values, as in this calculator.

Search

Enter either the p-value (represented by the blue area on the graph) or the test statistic (the coordinate along the horizontal axis) below to have the other value computed.

p-value Calculator

What is p-value, how do i calculate p-value from test statistic, how to interpret p-value, how to use the p-value calculator to find p-value from test statistic, how do i find p-value from z-score, how do i find p-value from t, p-value from chi-square score (χ² score), p-value from f-score.

Welcome to our p-value calculator! You will never again have to wonder how to find the p-value, as here you can determine the one-sided and two-sided p-values from test statistics, following all the most popular distributions: normal, t-Student, chi-squared, and Snedecor's F.

P-values appear all over science, yet many people find the concept a bit intimidating. Don't worry – in this article, we will explain not only what the p-value is but also how to interpret p-values correctly . Have you ever been curious about how to calculate the p-value by hand? We provide you with all the necessary formulae as well!

🙋 If you want to revise some basics from statistics, our normal distribution calculator is an excellent place to start.

Formally, the p-value is the probability that the test statistic will produce values at least as extreme as the value it produced for your sample . It is crucial to remember that this probability is calculated under the assumption that the null hypothesis H 0 is true !

More intuitively, p-value answers the question:

Assuming that I live in a world where the null hypothesis holds, how probable is it that, for another sample, the test I'm performing will generate a value at least as extreme as the one I observed for the sample I already have?

It is the alternative hypothesis that determines what "extreme" actually means , so the p-value depends on the alternative hypothesis that you state: left-tailed, right-tailed, or two-tailed. In the formulas below, S stands for a test statistic, x for the value it produced for a given sample, and Pr(event | H 0 ) is the probability of an event, calculated under the assumption that H 0 is true:

Left-tailed test: p-value = Pr(S ≤ x | H 0 )

Right-tailed test: p-value = Pr(S ≥ x | H 0 )

Two-tailed test:

p-value = 2 × min{Pr(S ≤ x | H 0 ), Pr(S ≥ x | H 0 )}

(By min{a,b} , we denote the smaller number out of a and b .)

If the distribution of the test statistic under H 0 is symmetric about 0 , then: p-value = 2 × Pr(S ≥ |x| | H 0 )

or, equivalently: p-value = 2 × Pr(S ≤ -|x| | H 0 )

As a picture is worth a thousand words, let us illustrate these definitions. Here, we use the fact that the probability can be neatly depicted as the area under the density curve for a given distribution. We give two sets of pictures: one for a symmetric distribution and the other for a skewed (non-symmetric) distribution.

  • Symmetric case: normal distribution:

p-values for symmetric distribution — left-tailed, right-tailed, and two-tailed tests.

  • Non-symmetric case: chi-squared distribution:

p-values for non-symmetric distribution — left-tailed, right-tailed, and two-tailed tests.

In the last picture (two-tailed p-value for skewed distribution), the area of the left-hand side is equal to the area of the right-hand side.

To determine the p-value, you need to know the distribution of your test statistic under the assumption that the null hypothesis is true . Then, with the help of the cumulative distribution function ( cdf ) of this distribution, we can express the probability of the test statistics being at least as extreme as its value x for the sample:

Left-tailed test:

p-value = cdf(x) .

Right-tailed test:

p-value = 1 - cdf(x) .

p-value = 2 × min{cdf(x) , 1 - cdf(x)} .

If the distribution of the test statistic under H 0 is symmetric about 0 , then a two-sided p-value can be simplified to p-value = 2 × cdf(-|x|) , or, equivalently, as p-value = 2 - 2 × cdf(|x|) .

The probability distributions that are most widespread in hypothesis testing tend to have complicated cdf formulae, and finding the p-value by hand may not be possible. You'll likely need to resort to a computer or to a statistical table, where people have gathered approximate cdf values.

Well, you now know how to calculate the p-value, but… why do you need to calculate this number in the first place? In hypothesis testing, the p-value approach is an alternative to the critical value approach . Recall that the latter requires researchers to pre-set the significance level, α, which is the probability of rejecting the null hypothesis when it is true (so of type I error ). Once you have your p-value, you just need to compare it with any given α to quickly decide whether or not to reject the null hypothesis at that significance level, α. For details, check the next section, where we explain how to interpret p-values.

As we have mentioned above, the p-value is the answer to the following question:

What does that mean for you? Well, you've got two options:

  • A high p-value means that your data is highly compatible with the null hypothesis; and
  • A small p-value provides evidence against the null hypothesis , as it means that your result would be very improbable if the null hypothesis were true.

However, it may happen that the null hypothesis is true, but your sample is highly unusual! For example, imagine we studied the effect of a new drug and got a p-value of 0.03 . This means that in 3% of similar studies, random chance alone would still be able to produce the value of the test statistic that we obtained, or a value even more extreme, even if the drug had no effect at all!

The question "what is p-value" can also be answered as follows: p-value is the smallest level of significance at which the null hypothesis would be rejected. So, if you now want to make a decision on the null hypothesis at some significance level α , just compare your p-value with α :

  • If p-value ≤ α , then you reject the null hypothesis and accept the alternative hypothesis; and
  • If p-value ≥ α , then you don't have enough evidence to reject the null hypothesis.

Obviously, the fate of the null hypothesis depends on α . For instance, if the p-value was 0.03 , we would reject the null hypothesis at a significance level of 0.05 , but not at a level of 0.01 . That's why the significance level should be stated in advance and not adapted conveniently after the p-value has been established! A significance level of 0.05 is the most common value, but there's nothing magical about it. Here, you can see what too strong a faith in the 0.05 threshold can lead to. It's always best to report the p-value, and allow the reader to make their own conclusions.

Also, bear in mind that subject area expertise (and common reason) is crucial. Otherwise, mindlessly applying statistical principles, you can easily arrive at statistically significant, despite the conclusion being 100% untrue.

As our p-value calculator is here at your service, you no longer need to wonder how to find p-value from all those complicated test statistics! Here are the steps you need to follow:

Pick the alternative hypothesis : two-tailed, right-tailed, or left-tailed.

Tell us the distribution of your test statistic under the null hypothesis: is it N(0,1), t-Student, chi-squared, or Snedecor's F? If you are unsure, check the sections below, as they are devoted to these distributions.

If needed, specify the degrees of freedom of the test statistic's distribution.

Enter the value of test statistic computed for your data sample.

Our calculator determines the p-value from the test statistic and provides the decision to be made about the null hypothesis. The standard significance level is 0.05 by default.

Go to the advanced mode if you need to increase the precision with which the calculations are performed or change the significance level .

In terms of the cumulative distribution function (cdf) of the standard normal distribution, which is traditionally denoted by Φ , the p-value is given by the following formulae:

Left-tailed z-test:

p-value = Φ(Z score )

Right-tailed z-test:

p-value = 1 - Φ(Z score )

Two-tailed z-test:

p-value = 2 × Φ(−|Z score |)

p-value = 2 - 2 × Φ(|Z score |)

🙋 To learn more about Z-tests, head to Omni's Z-test calculator .

We use the Z-score if the test statistic approximately follows the standard normal distribution N(0,1) . Thanks to the central limit theorem, you can count on the approximation if you have a large sample (say at least 50 data points) and treat your distribution as normal.

A Z-test most often refers to testing the population mean , or the difference between two population means, in particular between two proportions. You can also find Z-tests in maximum likelihood estimations.

The p-value from the t-score is given by the following formulae, in which cdf t,d stands for the cumulative distribution function of the t-Student distribution with d degrees of freedom:

Left-tailed t-test:

p-value = cdf t,d (t score )

Right-tailed t-test:

p-value = 1 - cdf t,d (t score )

Two-tailed t-test:

p-value = 2 × cdf t,d (−|t score |)

p-value = 2 - 2 × cdf t,d (|t score |)

Use the t-score option if your test statistic follows the t-Student distribution . This distribution has a shape similar to N(0,1) (bell-shaped and symmetric) but has heavier tails – the exact shape depends on the parameter called the degrees of freedom . If the number of degrees of freedom is large (>30), which generically happens for large samples, the t-Student distribution is practically indistinguishable from the normal distribution N(0,1).

The most common t-tests are those for population means with an unknown population standard deviation, or for the difference between means of two populations , with either equal or unequal yet unknown population standard deviations. There's also a t-test for paired (dependent) samples .

🙋 To get more insights into t-statistics, we recommend using our t-test calculator .

Use the χ²-score option when performing a test in which the test statistic follows the χ²-distribution .

This distribution arises if, for example, you take the sum of squared variables, each following the normal distribution N(0,1). Remember to check the number of degrees of freedom of the χ²-distribution of your test statistic!

How to find the p-value from chi-square-score ? You can do it with the help of the following formulae, in which cdf χ²,d denotes the cumulative distribution function of the χ²-distribution with d degrees of freedom:

Left-tailed χ²-test:

p-value = cdf χ²,d (χ² score )

Right-tailed χ²-test:

p-value = 1 - cdf χ²,d (χ² score )

Remember that χ²-tests for goodness-of-fit and independence are right-tailed tests! (see below)

Two-tailed χ²-test:

p-value = 2 × min{cdf χ²,d (χ² score ), 1 - cdf χ²,d (χ² score )}

(By min{a,b} , we denote the smaller of the numbers a and b .)

The most popular tests which lead to a χ²-score are the following:

Testing whether the variance of normally distributed data has some pre-determined value. In this case, the test statistic has the χ²-distribution with n - 1 degrees of freedom, where n is the sample size. This can be a one-tailed or two-tailed test .

Goodness-of-fit test checks whether the empirical (sample) distribution agrees with some expected probability distribution. In this case, the test statistic follows the χ²-distribution with k - 1 degrees of freedom, where k is the number of classes into which the sample is divided. This is a right-tailed test .

Independence test is used to determine if there is a statistically significant relationship between two variables. In this case, its test statistic is based on the contingency table and follows the χ²-distribution with (r - 1)(c - 1) degrees of freedom, where r is the number of rows, and c is the number of columns in this contingency table. This also is a right-tailed test .

Finally, the F-score option should be used when you perform a test in which the test statistic follows the F-distribution , also known as the Fisher–Snedecor distribution. The exact shape of an F-distribution depends on two degrees of freedom .

To see where those degrees of freedom come from, consider the independent random variables X and Y , which both follow the χ²-distributions with d 1 and d 2 degrees of freedom, respectively. In that case, the ratio (X/d 1 )/(Y/d 2 ) follows the F-distribution, with (d 1 , d 2 ) -degrees of freedom. For this reason, the two parameters d 1 and d 2 are also called the numerator and denominator degrees of freedom .

The p-value from F-score is given by the following formulae, where we let cdf F,d1,d2 denote the cumulative distribution function of the F-distribution, with (d 1 , d 2 ) -degrees of freedom:

Left-tailed F-test:

p-value = cdf F,d1,d2 (F score )

Right-tailed F-test:

p-value = 1 - cdf F,d1,d2 (F score )

Two-tailed F-test:

p-value = 2 × min{cdf F,d1,d2 (F score ), 1 - cdf F,d1,d2 (F score )}

Below we list the most important tests that produce F-scores. All of them are right-tailed tests .

A test for the equality of variances in two normally distributed populations . Its test statistic follows the F-distribution with (n - 1, m - 1) -degrees of freedom, where n and m are the respective sample sizes.

ANOVA is used to test the equality of means in three or more groups that come from normally distributed populations with equal variances. We arrive at the F-distribution with (k - 1, n - k) -degrees of freedom, where k is the number of groups, and n is the total sample size (in all groups together).

A test for overall significance of regression analysis . The test statistic has an F-distribution with (k - 1, n - k) -degrees of freedom, where n is the sample size, and k is the number of variables (including the intercept).

With the presence of the linear relationship having been established in your data sample with the above test, you can calculate the coefficient of determination, R 2 , which indicates the strength of this relationship . You can do it by hand or use our coefficient of determination calculator .

A test to compare two nested regression models . The test statistic follows the F-distribution with (k 2 - k 1 , n - k 2 ) -degrees of freedom, where k 1 and k 2 are the numbers of variables in the smaller and bigger models, respectively, and n is the sample size.

You may notice that the F-test of an overall significance is a particular form of the F-test for comparing two nested models: it tests whether our model does significantly better than the model with no predictors (i.e., the intercept-only model).

Can p-value be negative?

No, the p-value cannot be negative. This is because probabilities cannot be negative, and the p-value is the probability of the test statistic satisfying certain conditions.

What does a high p-value mean?

A high p-value means that under the null hypothesis, there's a high probability that for another sample, the test statistic will generate a value at least as extreme as the one observed in the sample you already have. A high p-value doesn't allow you to reject the null hypothesis.

What does a low p-value mean?

A low p-value means that under the null hypothesis, there's little probability that for another sample, the test statistic will generate a value at least as extreme as the one observed for the sample you already have. A low p-value is evidence in favor of the alternative hypothesis – it allows you to reject the null hypothesis.

Confusion matrix

Median absolute deviation, plastic footprint, social media time alternatives.

  • Biology (103)
  • Chemistry (101)
  • Construction (148)
  • Conversion (304)
  • Ecology (32)
  • Everyday life (263)
  • Finance (592)
  • Health (443)
  • Physics (513)
  • Sports (108)
  • Statistics (184)
  • Other (186)
  • Discover Omni (40)
  • AI Math Solver Graphing Calculator Popular Problems Worksheets Study Guides Cheat Sheets Calculators Verify Solution
  • Solutions Integral Calculator Derivative Calculator Algebra Calculator Matrix Calculator More...
  • Graphing Line Graph Exponential Graph Quadratic Graph Sine Graph More...
  • Calculators BMI Calculator Compound Interest Calculator Percentage Calculator Acceleration Calculator More...
  • Geometry Pythagorean Theorem Calculator Circle Area Calculator Isosceles Triangle Calculator Triangles Calculator More...
  • Tools Notebook Groups Cheat Sheets Worksheets Study Guides Practice Verify Solution
  • A P-value calculator is used to determine the statistical significance of an observed result in hypothesis testing. It takes as input the observed test statistic, the null hypothesis, and the relevant parameters of the statistical test (such as degrees of freedom), and computes the p-value. The p-value represents the probability of obtaining results as extreme as, or more extreme than, the observed data, assuming the null hypothesis is true. A lower p-value suggests stronger evidence against the null hypothesis, indicating that the observed result is unlikely to have occurred by random chance alone. The calculated p-value is used in comparison with a predefined significance level (alpha) to make decisions about the null hypothesis. If the p-value is less than or equal to alpha, typically 0.05, the results are considered statistically significant, leading to the rejection of the null hypothesis in favor of the alternative hypothesis. If the p-value is greater than alpha, there is insufficient evidence to reject the null hypothesis.
  • How do I calculate p-value?
  • The p-value is calculated by determining the probability of observing a test statistic as extreme as, or more extreme than, the observed one under the assumption of the null hypothesis.
  • What is p-value in Z test?
  • In a Z-test, the p-value is the probability of observing a Z-statistic as extreme as, or more extreme than, the calculated one, assuming a normal distribution and under the null hypothesis.
  • What is the p-value?
  • The p-value, or probability value, is a measure in statistics that quantifies the strength of evidence against a null hypothesis. It indicates the likelihood of observing a test statistic as extreme as, or more extreme than, the one obtained from the data, assuming the null hypothesis is true.
  • What is the alpha for p-value?
  • The alpha (α) for a p-value is the chosen level of significance that determines the threshold for rejecting the null hypothesis. It represents the maximum probability of making a Type I error (incorrectly rejecting a true null hypothesis) and is typically set at common values such as 0.05 or 0.01.
  • What does p-value under 0.05 mean?
  • A p-value under 0.05 typically suggests that there is statistically significant evidence to reject the null hypothesis in favor of an alternative hypothesis.

Graphing animation

We want your feedback

Please add a message.

Message received. Thanks for the feedback.

IMAGES

  1. Hypothesis Testing with the Normal Distribution

    hypothesis testing normal distribution calculator

  2. Hypothesis Testing Formula

    hypothesis testing normal distribution calculator

  3. Hypothesis Testing Population Mean

    hypothesis testing normal distribution calculator

  4. P value from hypothesis test calculator

    hypothesis testing normal distribution calculator

  5. SOLUTION: How to calculate normal distribution by using scientific

    hypothesis testing normal distribution calculator

  6. One Tailed Binomial Hypothesis Testing on Casio fx-CG50 Calculator

    hypothesis testing normal distribution calculator

VIDEO

  1. #8 Normal distribution and hypothesis testing: Statistics Practical for BBA

  2. Hypothesis Testing with Normal Distribution

  3. Perform and Interpret Results of a Hypothesis Test Using a Calculator

  4. CCEA Hypothesis testing question from their Topic Questions

  5. Perform and Interpret Results of a Hypothesis Test Using a Calculator

  6. SPSS Explore Data / How to Calculate Normal Distribution Probabilities

COMMENTS

  1. Hypothesis Testing Calculator with Steps - Stats Solver

    The easy-to-use hypothesis testing calculator gives you step-by-step solutions to the test statistic, p-value, critical value and more.

  2. Hypothesis Test Calculator | 365 Data Science

    Use this Hypothesis Test Calculator for quick results in Python and R. Learn the step-by-step hypothesis test process and why hypothesis testing is important.

  3. Z-test Calculator

    This Z-test calculator is a tool that helps you perform a one-sample Z-test on the population's mean. Two forms of this test - a two-tailed Z-test and a one-tailed Z-tests - exist, and can be used depending on your needs.

  4. Normal Distribution Calculator

    This normal distribution calculator (also a bell curve calculator) calculates the area under a bell curve and establishes the probability of a value being higher or lower than any arbitrary value X.

  5. Normality Test Calculator - Shapiro-Wilk, Anderson-Darling ...

    Use this normality test calculator to easily assess if the normality assumption can be applied to your data by using a battery of mis-specification tests. Currently supports: Shapiro-Wilk test / Shapiro-Francia test (n < 50 / n > 50), Anderson-Darling test, Jarque & Bera test, Cramer-von Mises test, d'Agostino-Pearson test.

  6. P Value from Z Score Calculator - Social Science Statistics

    P Value from Z Score Calculator. This is very easy: just stick your Z score in the box marked Z score, select your significance level and whether you're testing a one or two-tailed hypothesis (if you're not sure, go with the defaults), then press the button!

  7. P-value Calculator

    Calculator to compute p-value from Z-score or Z-score from p-value for a normal distribution. It also provides a diagram illustrating the area of the p-values.

  8. StatDistributions.com - Normal distribution calculator

    StatDistributions.com - Normal distribution calculator. Enter either the p-value (represented by the blue area on the graph) or the test statistic (the coordinate along the horizontal axis) below to have the other value computed.

  9. p-value Calculator | Formula | Interpretation

    Tell us the distribution of your test statistic under the null hypothesis: is it N(0,1), t-Student, chi-squared, or Snedecor's F? If you are unsure, check the sections below, as they are devoted to these distributions.

  10. P-value Calculator - Symbolab

    A P-value calculator is used to determine the statistical significance of an observed result in hypothesis testing. It takes as input the observed test statistic, the null hypothesis, and the relevant parameters of the statistical test (such as degrees of freedom), and computes the p-value.