American Public University System: LibAnswers banner

  • Richard G. Trefry Library
  • Writing & Citing

Q. What is the difference between a thesis statement and a hypothesis statement?

search.png

  • Course-Specific
  • Textbooks & Course Materials
  • Tutoring & Classroom Help
  • 1 Artificial Intelligence
  • 43 Formatting
  • 5 Information Literacy
  • 13 Plagiarism
  • 23 Thesis/Capstone/Dissertation

Answered By: APUS Librarians Last Updated: Apr 15, 2022     Views: 129304

Both the hypothesis statement and the thesis statement answer a research question. 

  • A hypothesis is a statement that can be proved or disproved. It is typically used in quantitative research and predicts the relationship between variables.  
  • A thesis statement is a short, direct sentence that summarizes the main point or claim of an essay or research paper. It is seen in quantitative, qualitative, and mixed methods research. A thesis statement is developed, supported, and explained in the body of the essay or research report by means of examples and evidence.

Every research study should contain a concise and well-written thesis statement. If the intent of the study is to prove/disprove something, that research report will also contain a hypothesis statement.

NOTE: In some disciplines, the hypothesis is referred to as a thesis statement! This is not accurate but within those disciplines it is understood that "a short, direct sentence that summarizes the main point" will be included.

For more information, see The Research Question and Hypothesis (PDF file from the English Language Support, Department of Student Services, Ryerson University).

How do I write a good thesis statement?

How do I write a good hypothesis statement?

  • Share on Facebook

Was this helpful? Yes 115 No 63

writing tutor

 

Related Topics

Need personalized help? Librarians are available 365 days/nights per year!  See our schedule.

Email your librarians. librarian@apus.edu

   

Learn more about how librarians can help you succeed.    

The Real Differences Between Thesis and Hypothesis (With table)

A thesis and a hypothesis are two very different things, but they are often confused with one another. In this blog post, we will explain the differences between these two terms, and help you understand when to use which one in a research project.

As a whole, the main difference between a thesis and a hypothesis is that a thesis is an assertion that can be proven or disproven, while a hypothesis is a statement that can be tested by scientific research. 

We probably need to expand a bit on this topic to make things clearer for you, let’s start with definitions and examples.

Definitions

As always, let’s start with the definition of each term before going further.

A thesis is a statement or theory that is put forward as a premise to be maintained or proved. A thesis statement is usually one sentence, and it states your position on the topic at hand.

You may also like:

The best way to understand the slight difference between those terms, is to give you an example for each of them.

If you are writing a paper about the effects of climate change on the environment, your thesis might be “Climate change is causing irreparable damage to our planet, and we must take action to prevent further damage”.

If your hypothesis is correct, then further research should be able to confirm it. However, if your hypothesis is incorrect, research will disprove it. Either way, a hypothesis is an important part of the scientific process.

The word “hypothesis” comes from the Greek words “hupo,” meaning “under”, and “thesis” that we just explained.

Argumentation vs idea

A thesis is usually the result of extensive research and contemplation, and seeks to prove a point or theory.

A hypothesis is only a statement that need to be tested by observation or experimentation.

5 mains differences between thesis and hypothesis

Thesis and hypothesis are different in several ways, here are the 5 keys differences between those terms:

So, in short, a thesis is an argument, while a hypothesis is a prediction. A thesis is more detailed and longer than a hypothesis, and it is based on research. Finally, a thesis must be proven, while a hypothesis does not need to be proven.

ThesisHypothesis
Can be arguedCannot be argued, and don’t need to
Generally longerGenerally shorter
Generally more detailedGenerally more general
Based on real researchOften just an opinion, not (yet) backed by science
Must be provenDon’t need to be proven

Is there a difference between a thesis and a claim?

Is a hypothesis a prediction.

No, a hypothesis is not a prediction. A prediction is a statement about what you think will happen in the future, whereas a hypothesis is a statement about what you think is causing a particular phenomenon.

What’s the difference between thesis and dissertation?

A thesis is usually shorter and more focused than a dissertation, and it is typically achieved in order to earn a bachelor’s degree. A dissertation is usually longer and more comprehensive, and it is typically completed in order to earn a master’s or doctorate degree.

What is a good thesis statement?

I am very curious and I love to learn about all types of subjects. Thanks to my experience on the web, I share my discoveries with you on this site :)

Similar Posts

Centaurs vs satyrs: what’s the real difference, 5 key distinctions between centaurs and minotaurs, what’s the difference between talent and skill, wales vs ireland: 7 key differences explained, 7 differences between greek and roman gods you don’t know, comedy vs. tragedy: what’s the difference (with table).

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

difference between statement and hypothesis

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

Thesis Vs Hypothesis: Understanding The Basis And The Key Differences

Hypothesis vs. thesis: They sound similar and seem to discuss the same thing. However, these terms have vastly different meanings and purposes. You may have encountered these concepts in school or research, but understanding them is key to executing quality work. 

In this article, I’ll discuss hypothesis vs. thesis, break down their differences, and show you how to apply this knowledge to create quality written works. Let’s get to it!

Thesis vs. Hypothesis: Understanding the Basis

The power of a thesis.

A thesis statement is typically found at the end of the introduction in an essay or research paper, succinctly summarizing the overarching theme.

Crafting a strong thesis

Hypothesis: the scientific proposition.

In contrast, a hypothesis is a tentative proposition or educated guess. It is the initial step in the scientific method, where researchers formulate a hunch to test their assumptions and theories. 

Formulating a hypothesis

Key differences between thesis vs. hypothesis, 1. nature of statement, 3. testability, 4. research stage, 6. examples.

These differences highlight the distinct roles that the thesis and hypothesis play in academic writing and scientific research, with one providing a point of argumentation and the other guiding the scientific inquiry process.

Can a hypothesis become a thesis?

Do all research papers require a thesis, can a thesis be proven wrong.

Yes. The purpose of a thesis is not only to prove but also to encourage critical analysis. It can be proven wrong with compelling counterarguments and evidence.

How long should a thesis statement be?

Is a hypothesis only used in scientific research, can a hypothesis be vague.

No. When creating a hypothesis, it’s important to make it clear and able to be tested. Developing experiments and making conclusions based on the results can be difficult if the hypothesis needs clarification.

Final Thoughts

In conclusion, understanding the differences between a hypothesis and a thesis is vital to crafting successful research projects and academic papers. While they may seem interchangeable at first glance, these two concepts serve distinct purposes in the research process. 

So, the next time you embark on a research project, take the time to ensure that you understand the fundamental difference between a hypothesis and a thesis. Doing so can lead to more focused, meaningful research that advances knowledge and understanding in your field.

You may also like:

Why do waiters get paid so little [+ how to make more money], navigating workplace norms: can you email a resignation letter, difference between roles and responsibilities, does suspension mean termination, moral claim: definition, significance, contemporary issues, & challenges, why can’t you flush the toilet after a drug test.

  • Privacy Policy

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Dissertation Methodology

Dissertation Methodology – Structure, Example...

Research Summary

Research Summary – Structure, Examples and...

Research Report

Research Report – Example, Writing Guide and...

Tables in Research Paper

Tables in Research Paper – Types, Creating Guide...

Theoretical Framework

Theoretical Framework – Types, Examples and...

Thesis Format

Thesis Format – Templates and Samples

Stack Exchange Network

Stack Exchange network consists of 183 Q&A communities including Stack Overflow , the largest, most trusted online community for developers to learn, share their knowledge, and build their careers.

Q&A for work

Connect and share knowledge within a single location that is structured and easy to search.

What is the difference between hypothesis, thesis statement and research goal?

Can someone explain the difference between hypothesis, thesis statement and research goal based on an example?

  • terminology

Wrzlprmft's user avatar

  • 1 You should mention which subject you are in. 'Hypothesis' has opposite meanings in maths and physics. –  Jessica B Commented May 31, 2018 at 11:22

2 Answers 2

I had this same question recently and did some research on it. The definitions I found weren't consistent, but from them I derived the following.

Thesis statement -- A definitive statement about the way the world (or your system of interest) works, especially what is most important in causing or influencing the behavior of the system.

"Family expectations has primary significance on the performance in college for Latino girls in the Western US" is an example of a thesis statement.

Research goal -- Expresses what you hope to learn or shed light on in your research. Specifically, the goal should specify what type of results you are hoping to achieve. It contextualizes your work in relation to other research, especially theory. It also feeds into your choice of method.

"My research goal is to develop a theoretical model of cultural influence on college performance, contextualized by gender and ethnicity" is an example of a research goal.

Hypotheses -- What specific conditions or relations do you aim to test or evaluate in your research. Any research that does not include a method for hypothesis testing should not claim to test hypotheses. A hypothesis statement must be specific enough that it is testable by the methods you choose, and also it should be falsifiable -- i.e. it is clear what evidence might prove the hypothesis false, and such evidence should be plausible and possible.

"Low family expectations has a detrimental effect on the college completion rate and time-to-complete for high-achieving Latino girls" is an example of a hypothesis statement.

Notice how there are specific, testable conditions and metrics -- "college completion rates" and "time-to-complete". These conditions should appear as metrics in your research methods -- i.e. instruments and analysis methods.

MrMeritology's user avatar

A thesis statement usually helps guide the research paper. It is a short sentence or summary containing the central idea of the research paper. It helps a reader have a clear glimpse of what the paper is about.

The Hypothesis statement comes in different format but with the intent to help prove or disprove a phenomenon. The hypothesis can help defend, support, explain or disprove, argue against the thesis statement.Usually the hypothesis measures specific issues or variables-two or more and therefore should be testable. The thesis statement creates a background while the hypothesis creates a means to measure the interrelationship.

The research goal takes a look into the future of your study or research paper. |It tries to help you state what the outcomes you seek to achieve by the research work. With a research goal you can set specific milestones to accomplish at the end of the research work.

Vwede Ohworho's user avatar

You must log in to answer this question.

Not the answer you're looking for browse other questions tagged thesis terminology ..

  • Featured on Meta
  • Bringing clarity to status tag usage on meta sites
  • Announcing a change to the data-dump process

Hot Network Questions

  • What was IBM VS/PC?
  • Where is this railroad track as seen in Rocky II during the training montage?
  • What is the first work of fiction to feature a vampire-human hybrid or dhampir vampire hunter as a protagonist?
  • Is my magic enough to keep a person without skin alive for a month?
  • Humans are forbidden from using complex computers. But what defines a complex computer?
  • Visual assessment of scatterplots acceptable?
  • How to go from Asia to America by ferry
  • Is there a way to read lawyers arguments in various trials?
  • Is the 2024 Ukrainian invasion of the Kursk region the first time since WW2 Russia was invaded?
  • Sum[] function not computing the sum
  • How cheap would rocket fuel have to be to make Mars colonization feasible (according to Musk)?
  • Using NDSolve to solve the PDEs and their reduced ODEs yields inconsistent results
  • Direction of centripetal acceleration
  • Were the common people in Germany ("good germans") morally co-responsible of the war crimes of their government?
  • How to connect 20 plus external hard drives to a computer?
  • What is the optimal number of function evaluations?
  • When has the SR-71 been used for civilian purposes?
  • How to remove and move several puzzle pieces?
  • The question about the existence of an infinite non-trivial controversy
  • I'm a little embarrassed by the research of one of my recommenders
  • How to clean a female disconnect connector
  • how did the Apollo 11 know its precise gyroscopic position?
  • Is there a non-semistable simple sheaf?
  • Is it a good idea to perform I2C Communication in the ISR?

difference between statement and hypothesis

difference between statement and hypothesis

What Is A Research (Scientific) Hypothesis? A plain-language explainer + examples

By:  Derek Jansen (MBA)  | Reviewed By: Dr Eunice Rautenbach | June 2020

If you’re new to the world of research, or it’s your first time writing a dissertation or thesis, you’re probably noticing that the words “research hypothesis” and “scientific hypothesis” are used quite a bit, and you’re wondering what they mean in a research context .

“Hypothesis” is one of those words that people use loosely, thinking they understand what it means. However, it has a very specific meaning within academic research. So, it’s important to understand the exact meaning before you start hypothesizing. 

Research Hypothesis 101

  • What is a hypothesis ?
  • What is a research hypothesis (scientific hypothesis)?
  • Requirements for a research hypothesis
  • Definition of a research hypothesis
  • The null hypothesis

What is a hypothesis?

Let’s start with the general definition of a hypothesis (not a research hypothesis or scientific hypothesis), according to the Cambridge Dictionary:

Hypothesis: an idea or explanation for something that is based on known facts but has not yet been proved.

In other words, it’s a statement that provides an explanation for why or how something works, based on facts (or some reasonable assumptions), but that has not yet been specifically tested . For example, a hypothesis might look something like this:

Hypothesis: sleep impacts academic performance.

This statement predicts that academic performance will be influenced by the amount and/or quality of sleep a student engages in – sounds reasonable, right? It’s based on reasonable assumptions , underpinned by what we currently know about sleep and health (from the existing literature). So, loosely speaking, we could call it a hypothesis, at least by the dictionary definition.

But that’s not good enough…

Unfortunately, that’s not quite sophisticated enough to describe a research hypothesis (also sometimes called a scientific hypothesis), and it wouldn’t be acceptable in a dissertation, thesis or research paper . In the world of academic research, a statement needs a few more criteria to constitute a true research hypothesis .

What is a research hypothesis?

A research hypothesis (also called a scientific hypothesis) is a statement about the expected outcome of a study (for example, a dissertation or thesis). To constitute a quality hypothesis, the statement needs to have three attributes – specificity , clarity and testability .

Let’s take a look at these more closely.

Need a helping hand?

difference between statement and hypothesis

Hypothesis Essential #1: Specificity & Clarity

A good research hypothesis needs to be extremely clear and articulate about both what’ s being assessed (who or what variables are involved ) and the expected outcome (for example, a difference between groups, a relationship between variables, etc.).

Let’s stick with our sleepy students example and look at how this statement could be more specific and clear.

Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.

As you can see, the statement is very specific as it identifies the variables involved (sleep hours and test grades), the parties involved (two groups of students), as well as the predicted relationship type (a positive relationship). There’s no ambiguity or uncertainty about who or what is involved in the statement, and the expected outcome is clear.

Contrast that to the original hypothesis we looked at – “Sleep impacts academic performance” – and you can see the difference. “Sleep” and “academic performance” are both comparatively vague , and there’s no indication of what the expected relationship direction is (more sleep or less sleep). As you can see, specificity and clarity are key.

A good research hypothesis needs to be very clear about what’s being assessed and very specific about the expected outcome.

Hypothesis Essential #2: Testability (Provability)

A statement must be testable to qualify as a research hypothesis. In other words, there needs to be a way to prove (or disprove) the statement. If it’s not testable, it’s not a hypothesis – simple as that.

For example, consider the hypothesis we mentioned earlier:

Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.  

We could test this statement by undertaking a quantitative study involving two groups of students, one that gets 8 or more hours of sleep per night for a fixed period, and one that gets less. We could then compare the standardised test results for both groups to see if there’s a statistically significant difference. 

Again, if you compare this to the original hypothesis we looked at – “Sleep impacts academic performance” – you can see that it would be quite difficult to test that statement, primarily because it isn’t specific enough. How much sleep? By who? What type of academic performance?

So, remember the mantra – if you can’t test it, it’s not a hypothesis 🙂

A good research hypothesis must be testable. In other words, you must able to collect observable data in a scientifically rigorous fashion to test it.

Defining A Research Hypothesis

You’re still with us? Great! Let’s recap and pin down a clear definition of a hypothesis.

A research hypothesis (or scientific hypothesis) is a statement about an expected relationship between variables, or explanation of an occurrence, that is clear, specific and testable.

So, when you write up hypotheses for your dissertation or thesis, make sure that they meet all these criteria. If you do, you’ll not only have rock-solid hypotheses but you’ll also ensure a clear focus for your entire research project.

What about the null hypothesis?

You may have also heard the terms null hypothesis , alternative hypothesis, or H-zero thrown around. At a simple level, the null hypothesis is the counter-proposal to the original hypothesis.

For example, if the hypothesis predicts that there is a relationship between two variables (for example, sleep and academic performance), the null hypothesis would predict that there is no relationship between those variables.

At a more technical level, the null hypothesis proposes that no statistical significance exists in a set of given observations and that any differences are due to chance alone.

And there you have it – hypotheses in a nutshell. 

If you have any questions, be sure to leave a comment below and we’ll do our best to help you. If you need hands-on help developing and testing your hypotheses, consider our private coaching service , where we hold your hand through the research journey.

Research Methodology Bootcamp

17 Comments

Lynnet Chikwaikwai

Very useful information. I benefit more from getting more information in this regard.

Dr. WuodArek

Very great insight,educative and informative. Please give meet deep critics on many research data of public international Law like human rights, environment, natural resources, law of the sea etc

Afshin

In a book I read a distinction is made between null, research, and alternative hypothesis. As far as I understand, alternative and research hypotheses are the same. Can you please elaborate? Best Afshin

GANDI Benjamin

This is a self explanatory, easy going site. I will recommend this to my friends and colleagues.

Lucile Dossou-Yovo

Very good definition. How can I cite your definition in my thesis? Thank you. Is nul hypothesis compulsory in a research?

Pereria

It’s a counter-proposal to be proven as a rejection

Egya Salihu

Please what is the difference between alternate hypothesis and research hypothesis?

Mulugeta Tefera

It is a very good explanation. However, it limits hypotheses to statistically tasteable ideas. What about for qualitative researches or other researches that involve quantitative data that don’t need statistical tests?

Derek Jansen

In qualitative research, one typically uses propositions, not hypotheses.

Samia

could you please elaborate it more

Patricia Nyawir

I’ve benefited greatly from these notes, thank you.

Hopeson Khondiwa

This is very helpful

Dr. Andarge

well articulated ideas are presented here, thank you for being reliable sources of information

TAUNO

Excellent. Thanks for being clear and sound about the research methodology and hypothesis (quantitative research)

I have only a simple question regarding the null hypothesis. – Is the null hypothesis (Ho) known as the reversible hypothesis of the alternative hypothesis (H1? – How to test it in academic research?

Tesfaye Negesa Urge

this is very important note help me much more

Elton Cleckley

Hi” best wishes to you and your very nice blog” 

Trackbacks/Pingbacks

  • What Is Research Methodology? Simple Definition (With Examples) - Grad Coach - […] Contrasted to this, a quantitative methodology is typically used when the research aims and objectives are confirmatory in nature. For example,…

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center

experiments disproving spontaneous generation

  • When did science begin?
  • Where was science invented?

Blackboard inscribed with scientific formulas and calculations in physics and mathematics

scientific hypothesis

Our editors will review what you’ve submitted and determine whether to revise the article.

  • National Center for Biotechnology Information - PubMed Central - On the scope of scientific hypotheses
  • LiveScience - What is a scientific hypothesis?
  • The Royal Society - Open Science - On the scope of scientific hypotheses

experiments disproving spontaneous generation

scientific hypothesis , an idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world. The two primary features of a scientific hypothesis are falsifiability and testability, which are reflected in an “If…then” statement summarizing the idea and in the ability to be supported or refuted through observation and experimentation. The notion of the scientific hypothesis as both falsifiable and testable was advanced in the mid-20th century by Austrian-born British philosopher Karl Popper .

The formulation and testing of a hypothesis is part of the scientific method , the approach scientists use when attempting to understand and test ideas about natural phenomena. The generation of a hypothesis frequently is described as a creative process and is based on existing scientific knowledge, intuition , or experience. Therefore, although scientific hypotheses commonly are described as educated guesses, they actually are more informed than a guess. In addition, scientists generally strive to develop simple hypotheses, since these are easier to test relative to hypotheses that involve many different variables and potential outcomes. Such complex hypotheses may be developed as scientific models ( see scientific modeling ).

Depending on the results of scientific evaluation, a hypothesis typically is either rejected as false or accepted as true. However, because a hypothesis inherently is falsifiable, even hypotheses supported by scientific evidence and accepted as true are susceptible to rejection later, when new evidence has become available. In some instances, rather than rejecting a hypothesis because it has been falsified by new evidence, scientists simply adapt the existing idea to accommodate the new information. In this sense a hypothesis is never incorrect but only incomplete.

The investigation of scientific hypotheses is an important component in the development of scientific theory . Hence, hypotheses differ fundamentally from theories; whereas the former is a specific tentative explanation and serves as the main tool by which scientists gather data, the latter is a broad general explanation that incorporates data from many different scientific investigations undertaken to explore hypotheses.

Countless hypotheses have been developed and tested throughout the history of science . Several examples include the idea that living organisms develop from nonliving matter, which formed the basis of spontaneous generation , a hypothesis that ultimately was disproved (first in 1668, with the experiments of Italian physician Francesco Redi , and later in 1859, with the experiments of French chemist and microbiologist Louis Pasteur ); the concept proposed in the late 19th century that microorganisms cause certain diseases (now known as germ theory ); and the notion that oceanic crust forms along submarine mountain zones and spreads laterally away from them ( seafloor spreading hypothesis ).

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Banner

PSC 352: Introduction to Comparative Politics

  • Getting Started
  • Comparative Politics Overview
  • Current World/Political News Feeds
  • Choose a country

What is the difference between a thesis & a hypothesis?

  • Find Books/eBooks
  • Find Articles, Reports & Documents
  • Find Statistics
  • Find Poll & Survey Results
  • Evaluate Your Sources
  • Cite Your Sources

B oth the hypothesis statement and the thesis statement answer the research question of the study.  When the statement is one that can be proved or disproved, it is an hypothesis statement.  If, instead, the statement specifically shows the intentions/objectives/position of the researcher, it is a thesis statement.

A hypothesis is a statement that can be proved or disproved.  It is typically used in quantitative research and predicts the relationship between variables.

A thesis statement is a short, direct sentence that summarizes the main point or claim of an essay or research paper. It is seen in quantitative, qualitative, and mixed methods research.  A thesis statement is developed, supported, and explained in the body of the essay or research report by means of examples and evidence.

Every research study should contain a concise and well-written thesis statement. If the intent of the study is to prove/disprove something, that research report will also contain an hypothesis statement.

Jablonski , Judith. What is the difference between a thesis statement and an hypothesis statement? Online Library. American Public University System. Jun 16, 2014. Web.   http://apus.libanswers.com/faq/2374

Let’s say you are interested in the conflict in Darfur, and you conclude that the issues you wish to address include the nature, causes, and effects of the conflict, and the international response. While you could address the issue of international response first, it makes the most sense to start with a description of the conflict, followed by an exploration of the causes, effects, and then to discuss the international response and what more could/should be done.

This hypothetical example may lead to the following title, introduction, and statement of questions:

Conflict in Darfur: Causes, Consequences, and International Response       This paper examines the conflict in Darfur, Sudan. It is organized around the following questions: (1) What is the nature of the conflict in Darfur? (2) What are the causes and effects of the conflict? (3) What has the international community done to address it, and what more could/should it do?

Following the section that presents your questions and background, you will offer a set of responses/answers/(hypo)theses. They should follow the order of the questions. This might look something like this, “The paper argues/contends/ maintains/seeks to develop the position that...etc.” The most important thing you can do in this section is to present as clearly as possible your best thinking on the subject matter guided by course material and research. As you proceed through the research process, your thinking about the issues/questions will become more nuanced, complex, and refined. The statement of your theses will reflect this as you move forward in the research process.

So, looking to our hypothetical example on Darfur:

The current conflict in Darfur goes back more than a decade and consists of fighting between government-supported troops and residents of Darfur. The causes of the conflict include x, y, and z. The effects of the conflict have been a, b, and c. The international community has done 0, and it should do 1, 2, and 3.

Once you have setup your thesis you will be ready to begin amassing supporting evidence for you claims. This is a very important part of the research paper, as you will provide the substance to defend your thesis.

  • << Previous: Choose a country
  • Next: Find Books/eBooks >>
  • Last Updated: Aug 6, 2024 3:25 PM
  • URL: https://libguides.mssu.edu/PSC352

This site is maintained by the librarians of George A. Spiva Library . If you have a question or comment about the Library's LibGuides, please contact the site administrator .

Pediaa.Com

Home » Education » Difference Between Thesis and Hypothesis

Difference Between Thesis and Hypothesis

Main difference –  thesis vs hypothesis                           .

Thesis and hypothesis are two common terms that are often found in research studies. Hypothesis is a logical proposition that is based on existing knowledge that serves as the starting point of an investigation. A thesis is a statement that is put forward as a premise to be maintained or proved. The main difference between thesis and hypothesis is that thesis is found in all research studies whereas a hypothesis is mainly found in experimental quantitative research studies.

This article explains,

1. What is a Thesis?      – Definition, Features, Function

2. What is a Hypothesis?      – Definition, Features, Function

Difference Between Thesis and Hypothesis - Comparison Summary

What is a Thesis

The word thesis has two meanings in a research study. Thesis can either refer to a dissertation or a thesis statement. Thesis or dissertation is the long essay or document that consists of the research study.  Thesis can also refer to a theory or statement that is used as a premise to be maintained or proved.

The thesis statement in a research article is a sentence found at the beginning of the paper that presents the main argument of the paper. The rest of the document will gather, organize and present evidence to support this argument. The thesis statement will basically present the topic of the paper and indicate what position the researcher is going to take in relation to this topic. A thesis statement can generally be found at the end of the first paragraph (introductory paragraph) of the paper.

Main Difference - Thesis vs Hypothesis

What is a Hypothesis

A hypothesis is a logical assumption based on available evidence. Hypothesis is defined as “a supposition or proposed explanation made on the basis of limited evidence as a starting point for further investigation” in the Oxford dictionary and as “an idea or theory that is not proven but that leads to further study or discussion” in the Merriam-Webster dictionary. In simple words, it is an educated guess that is not proven with concrete scientific evidence. Once it is scientifically tested and proven, it becomes a theory. However, it is important to note that a hypothesis can be accurate or inaccurate.

Hypotheses are mostly used in experiments and research studies. However, hypotheses are not used in every research study. They are mostly used in quantitative research studies  that deal with experiments. Hypotheses are often used to test a specific model or theory . They can be used only when the researcher has sufficient knowledge about the subject since hypothesis are always based on the existing knowledge. Once the hypothesis is built, the researcher can find and analyze data and use them to prove or disprove the hypothesis.

Difference Between Thesis and Hypothesis - 1

Thesis: A thesis is a “statement or theory that is put forward as a premise to be maintained or proved” or a “long essay or dissertation involving personal research, written by a candidate for a university degree” (Oxford dictionary).

Hypothesis: A hypothesis is “a supposition or proposed explanation made on the basis of limited evidence as a starting point for further investigation” (Oxford dictionary).

Thesis: Thesis statement can be found in all research papers.

Hypothesis: Hypotheses are usually found in experimental quantitative research studies.

Thesis: Thesis statement may explain the hypothesis and how the researcher intends to support it.

Hypothesis: Hypothesis is an educated guess based on the existing knowledge.

Image Courtesy:

“Master’s Thesis” by  Henri Sivonen   (CC BY 2.0)  via Flickr

“Colonial Flagellate Hypothesis” By Katelynp1 – Own work (CC BY-SA 3.0) via Commons Wikimedia

' src=

About the Author: Hasa

Hasanthi is a seasoned content writer and editor with over 8 years of experience. Armed with a BA degree in English and a knack for digital marketing, she explores her passions for literature, history, culture, and food through her engaging and informative writing.

​You May Also Like These

Leave a reply cancel reply.

Research Hypothesis In Psychology: Types, & Examples

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

A research hypothesis, in its plural form “hypotheses,” is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method .

Hypotheses connect theory to data and guide the research process towards expanding scientific understanding

Some key points about hypotheses:

  • A hypothesis expresses an expected pattern or relationship. It connects the variables under investigation.
  • It is stated in clear, precise terms before any data collection or analysis occurs. This makes the hypothesis testable.
  • A hypothesis must be falsifiable. It should be possible, even if unlikely in practice, to collect data that disconfirms rather than supports the hypothesis.
  • Hypotheses guide research. Scientists design studies to explicitly evaluate hypotheses about how nature works.
  • For a hypothesis to be valid, it must be testable against empirical evidence. The evidence can then confirm or disprove the testable predictions.
  • Hypotheses are informed by background knowledge and observation, but go beyond what is already known to propose an explanation of how or why something occurs.
Predictions typically arise from a thorough knowledge of the research literature, curiosity about real-world problems or implications, and integrating this to advance theory. They build on existing literature while providing new insight.

Types of Research Hypotheses

Alternative hypothesis.

The research hypothesis is often called the alternative or experimental hypothesis in experimental research.

It typically suggests a potential relationship between two key variables: the independent variable, which the researcher manipulates, and the dependent variable, which is measured based on those changes.

The alternative hypothesis states a relationship exists between the two variables being studied (one variable affects the other).

A hypothesis is a testable statement or prediction about the relationship between two or more variables. It is a key component of the scientific method. Some key points about hypotheses:

  • Important hypotheses lead to predictions that can be tested empirically. The evidence can then confirm or disprove the testable predictions.

In summary, a hypothesis is a precise, testable statement of what researchers expect to happen in a study and why. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

An experimental hypothesis predicts what change(s) will occur in the dependent variable when the independent variable is manipulated.

It states that the results are not due to chance and are significant in supporting the theory being investigated.

The alternative hypothesis can be directional, indicating a specific direction of the effect, or non-directional, suggesting a difference without specifying its nature. It’s what researchers aim to support or demonstrate through their study.

Null Hypothesis

The null hypothesis states no relationship exists between the two variables being studied (one variable does not affect the other). There will be no changes in the dependent variable due to manipulating the independent variable.

It states results are due to chance and are not significant in supporting the idea being investigated.

The null hypothesis, positing no effect or relationship, is a foundational contrast to the research hypothesis in scientific inquiry. It establishes a baseline for statistical testing, promoting objectivity by initiating research from a neutral stance.

Many statistical methods are tailored to test the null hypothesis, determining the likelihood of observed results if no true effect exists.

This dual-hypothesis approach provides clarity, ensuring that research intentions are explicit, and fosters consistency across scientific studies, enhancing the standardization and interpretability of research outcomes.

Nondirectional Hypothesis

A non-directional hypothesis, also known as a two-tailed hypothesis, predicts that there is a difference or relationship between two variables but does not specify the direction of this relationship.

It merely indicates that a change or effect will occur without predicting which group will have higher or lower values.

For example, “There is a difference in performance between Group A and Group B” is a non-directional hypothesis.

Directional Hypothesis

A directional (one-tailed) hypothesis predicts the nature of the effect of the independent variable on the dependent variable. It predicts in which direction the change will take place. (i.e., greater, smaller, less, more)

It specifies whether one variable is greater, lesser, or different from another, rather than just indicating that there’s a difference without specifying its nature.

For example, “Exercise increases weight loss” is a directional hypothesis.

hypothesis

Falsifiability

The Falsification Principle, proposed by Karl Popper , is a way of demarcating science from non-science. It suggests that for a theory or hypothesis to be considered scientific, it must be testable and irrefutable.

Falsifiability emphasizes that scientific claims shouldn’t just be confirmable but should also have the potential to be proven wrong.

It means that there should exist some potential evidence or experiment that could prove the proposition false.

However many confirming instances exist for a theory, it only takes one counter observation to falsify it. For example, the hypothesis that “all swans are white,” can be falsified by observing a black swan.

For Popper, science should attempt to disprove a theory rather than attempt to continually provide evidence to support a research hypothesis.

Can a Hypothesis be Proven?

Hypotheses make probabilistic predictions. They state the expected outcome if a particular relationship exists. However, a study result supporting a hypothesis does not definitively prove it is true.

All studies have limitations. There may be unknown confounding factors or issues that limit the certainty of conclusions. Additional studies may yield different results.

In science, hypotheses can realistically only be supported with some degree of confidence, not proven. The process of science is to incrementally accumulate evidence for and against hypothesized relationships in an ongoing pursuit of better models and explanations that best fit the empirical data. But hypotheses remain open to revision and rejection if that is where the evidence leads.
  • Disproving a hypothesis is definitive. Solid disconfirmatory evidence will falsify a hypothesis and require altering or discarding it based on the evidence.
  • However, confirming evidence is always open to revision. Other explanations may account for the same results, and additional or contradictory evidence may emerge over time.

We can never 100% prove the alternative hypothesis. Instead, we see if we can disprove, or reject the null hypothesis.

If we reject the null hypothesis, this doesn’t mean that our alternative hypothesis is correct but does support the alternative/experimental hypothesis.

Upon analysis of the results, an alternative hypothesis can be rejected or supported, but it can never be proven to be correct. We must avoid any reference to results proving a theory as this implies 100% certainty, and there is always a chance that evidence may exist which could refute a theory.

How to Write a Hypothesis

  • Identify variables . The researcher manipulates the independent variable and the dependent variable is the measured outcome.
  • Operationalized the variables being investigated . Operationalization of a hypothesis refers to the process of making the variables physically measurable or testable, e.g. if you are about to study aggression, you might count the number of punches given by participants.
  • Decide on a direction for your prediction . If there is evidence in the literature to support a specific effect of the independent variable on the dependent variable, write a directional (one-tailed) hypothesis. If there are limited or ambiguous findings in the literature regarding the effect of the independent variable on the dependent variable, write a non-directional (two-tailed) hypothesis.
  • Make it Testable : Ensure your hypothesis can be tested through experimentation or observation. It should be possible to prove it false (principle of falsifiability).
  • Clear & concise language . A strong hypothesis is concise (typically one to two sentences long), and formulated using clear and straightforward language, ensuring it’s easily understood and testable.

Consider a hypothesis many teachers might subscribe to: students work better on Monday morning than on Friday afternoon (IV=Day, DV= Standard of work).

Now, if we decide to study this by giving the same group of students a lesson on a Monday morning and a Friday afternoon and then measuring their immediate recall of the material covered in each session, we would end up with the following:

  • The alternative hypothesis states that students will recall significantly more information on a Monday morning than on a Friday afternoon.
  • The null hypothesis states that there will be no significant difference in the amount recalled on a Monday morning compared to a Friday afternoon. Any difference will be due to chance or confounding factors.

More Examples

  • Memory : Participants exposed to classical music during study sessions will recall more items from a list than those who studied in silence.
  • Social Psychology : Individuals who frequently engage in social media use will report higher levels of perceived social isolation compared to those who use it infrequently.
  • Developmental Psychology : Children who engage in regular imaginative play have better problem-solving skills than those who don’t.
  • Clinical Psychology : Cognitive-behavioral therapy will be more effective in reducing symptoms of anxiety over a 6-month period compared to traditional talk therapy.
  • Cognitive Psychology : Individuals who multitask between various electronic devices will have shorter attention spans on focused tasks than those who single-task.
  • Health Psychology : Patients who practice mindfulness meditation will experience lower levels of chronic pain compared to those who don’t meditate.
  • Organizational Psychology : Employees in open-plan offices will report higher levels of stress than those in private offices.
  • Behavioral Psychology : Rats rewarded with food after pressing a lever will press it more frequently than rats who receive no reward.

Print Friendly, PDF & Email

What is a scientific hypothesis?

It's the initial building block in the scientific method.

A girl looks at plants in a test tube for a science experiment. What&#039;s her scientific hypothesis?

Hypothesis basics

What makes a hypothesis testable.

  • Types of hypotheses
  • Hypothesis versus theory

Additional resources

Bibliography.

A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. It's the initial building block in the scientific method . Many describe it as an "educated guess" based on prior knowledge and observation. While this is true, a hypothesis is more informed than a guess. While an "educated guess" suggests a random prediction based on a person's expertise, developing a hypothesis requires active observation and background research. 

The basic idea of a hypothesis is that there is no predetermined outcome. For a solution to be termed a scientific hypothesis, it has to be an idea that can be supported or refuted through carefully crafted experimentation or observation. This concept, called falsifiability and testability, was advanced in the mid-20th century by Austrian-British philosopher Karl Popper in his famous book "The Logic of Scientific Discovery" (Routledge, 1959).

A key function of a hypothesis is to derive predictions about the results of future experiments and then perform those experiments to see whether they support the predictions.

A hypothesis is usually written in the form of an if-then statement, which gives a possibility (if) and explains what may happen because of the possibility (then). The statement could also include "may," according to California State University, Bakersfield .

Here are some examples of hypothesis statements:

  • If garlic repels fleas, then a dog that is given garlic every day will not get fleas.
  • If sugar causes cavities, then people who eat a lot of candy may be more prone to cavities.
  • If ultraviolet light can damage the eyes, then maybe this light can cause blindness.

A useful hypothesis should be testable and falsifiable. That means that it should be possible to prove it wrong. A theory that can't be proved wrong is nonscientific, according to Karl Popper's 1963 book " Conjectures and Refutations ."

An example of an untestable statement is, "Dogs are better than cats." That's because the definition of "better" is vague and subjective. However, an untestable statement can be reworded to make it testable. For example, the previous statement could be changed to this: "Owning a dog is associated with higher levels of physical fitness than owning a cat." With this statement, the researcher can take measures of physical fitness from dog and cat owners and compare the two.

Types of scientific hypotheses

Elementary-age students study alternative energy using homemade windmills during public school science class.

In an experiment, researchers generally state their hypotheses in two ways. The null hypothesis predicts that there will be no relationship between the variables tested, or no difference between the experimental groups. The alternative hypothesis predicts the opposite: that there will be a difference between the experimental groups. This is usually the hypothesis scientists are most interested in, according to the University of Miami .

For example, a null hypothesis might state, "There will be no difference in the rate of muscle growth between people who take a protein supplement and people who don't." The alternative hypothesis would state, "There will be a difference in the rate of muscle growth between people who take a protein supplement and people who don't."

If the results of the experiment show a relationship between the variables, then the null hypothesis has been rejected in favor of the alternative hypothesis, according to the book " Research Methods in Psychology " (​​BCcampus, 2015). 

There are other ways to describe an alternative hypothesis. The alternative hypothesis above does not specify a direction of the effect, only that there will be a difference between the two groups. That type of prediction is called a two-tailed hypothesis. If a hypothesis specifies a certain direction — for example, that people who take a protein supplement will gain more muscle than people who don't — it is called a one-tailed hypothesis, according to William M. K. Trochim , a professor of Policy Analysis and Management at Cornell University.

Sometimes, errors take place during an experiment. These errors can happen in one of two ways. A type I error is when the null hypothesis is rejected when it is true. This is also known as a false positive. A type II error occurs when the null hypothesis is not rejected when it is false. This is also known as a false negative, according to the University of California, Berkeley . 

A hypothesis can be rejected or modified, but it can never be proved correct 100% of the time. For example, a scientist can form a hypothesis stating that if a certain type of tomato has a gene for red pigment, that type of tomato will be red. During research, the scientist then finds that each tomato of this type is red. Though the findings confirm the hypothesis, there may be a tomato of that type somewhere in the world that isn't red. Thus, the hypothesis is true, but it may not be true 100% of the time.

Scientific theory vs. scientific hypothesis

The best hypotheses are simple. They deal with a relatively narrow set of phenomena. But theories are broader; they generally combine multiple hypotheses into a general explanation for a wide range of phenomena, according to the University of California, Berkeley . For example, a hypothesis might state, "If animals adapt to suit their environments, then birds that live on islands with lots of seeds to eat will have differently shaped beaks than birds that live on islands with lots of insects to eat." After testing many hypotheses like these, Charles Darwin formulated an overarching theory: the theory of evolution by natural selection.

"Theories are the ways that we make sense of what we observe in the natural world," Tanner said. "Theories are structures of ideas that explain and interpret facts." 

  • Read more about writing a hypothesis, from the American Medical Writers Association.
  • Find out why a hypothesis isn't always necessary in science, from The American Biology Teacher.
  • Learn about null and alternative hypotheses, from Prof. Essa on YouTube .

Encyclopedia Britannica. Scientific Hypothesis. Jan. 13, 2022. https://www.britannica.com/science/scientific-hypothesis

Karl Popper, "The Logic of Scientific Discovery," Routledge, 1959.

California State University, Bakersfield, "Formatting a testable hypothesis." https://www.csub.edu/~ddodenhoff/Bio100/Bio100sp04/formattingahypothesis.htm  

Karl Popper, "Conjectures and Refutations," Routledge, 1963.

Price, P., Jhangiani, R., & Chiang, I., "Research Methods of Psychology — 2nd Canadian Edition," BCcampus, 2015.‌

University of Miami, "The Scientific Method" http://www.bio.miami.edu/dana/161/evolution/161app1_scimethod.pdf  

William M.K. Trochim, "Research Methods Knowledge Base," https://conjointly.com/kb/hypotheses-explained/  

University of California, Berkeley, "Multiple Hypothesis Testing and False Discovery Rate" https://www.stat.berkeley.edu/~hhuang/STAT141/Lecture-FDR.pdf  

University of California, Berkeley, "Science at multiple levels" https://undsci.berkeley.edu/article/0_0_0/howscienceworks_19

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

White Shark Café: The mysterious meeting spot for great whites in the middle of the Pacific Ocean

Massive helium reservoir in Minnesota could solve US shortage

'Sensational discovery' of 2,000-year-old Roman military camp found hidden in the Swiss Alps

Most Popular

  • 2 New tick-borne virus discovered in China can affect the brain, scientists report
  • 3 Watch Live: Boeing Starliner is about to return to Earth without its crew
  • 4 Anthrax has killed over 50 animals in Wyoming — what's the risk to people?
  • 5 Pollution harms men's fertility, but traffic noise affects women's

difference between statement and hypothesis

Educational resources and simple solutions for your research journey

Research hypothesis: What it is, how to write it, types, and examples

What is a Research Hypothesis: How to Write it, Types, and Examples

difference between statement and hypothesis

Any research begins with a research question and a research hypothesis . A research question alone may not suffice to design the experiment(s) needed to answer it. A hypothesis is central to the scientific method. But what is a hypothesis ? A hypothesis is a testable statement that proposes a possible explanation to a phenomenon, and it may include a prediction. Next, you may ask what is a research hypothesis ? Simply put, a research hypothesis is a prediction or educated guess about the relationship between the variables that you want to investigate.  

It is important to be thorough when developing your research hypothesis. Shortcomings in the framing of a hypothesis can affect the study design and the results. A better understanding of the research hypothesis definition and characteristics of a good hypothesis will make it easier for you to develop your own hypothesis for your research. Let’s dive in to know more about the types of research hypothesis , how to write a research hypothesis , and some research hypothesis examples .  

Table of Contents

What is a hypothesis ?  

A hypothesis is based on the existing body of knowledge in a study area. Framed before the data are collected, a hypothesis states the tentative relationship between independent and dependent variables, along with a prediction of the outcome.  

What is a research hypothesis ?  

Young researchers starting out their journey are usually brimming with questions like “ What is a hypothesis ?” “ What is a research hypothesis ?” “How can I write a good research hypothesis ?”   

A research hypothesis is a statement that proposes a possible explanation for an observable phenomenon or pattern. It guides the direction of a study and predicts the outcome of the investigation. A research hypothesis is testable, i.e., it can be supported or disproven through experimentation or observation.     

difference between statement and hypothesis

Characteristics of a good hypothesis  

Here are the characteristics of a good hypothesis :  

  • Clearly formulated and free of language errors and ambiguity  
  • Concise and not unnecessarily verbose  
  • Has clearly defined variables  
  • Testable and stated in a way that allows for it to be disproven  
  • Can be tested using a research design that is feasible, ethical, and practical   
  • Specific and relevant to the research problem  
  • Rooted in a thorough literature search  
  • Can generate new knowledge or understanding.  

How to create an effective research hypothesis  

A study begins with the formulation of a research question. A researcher then performs background research. This background information forms the basis for building a good research hypothesis . The researcher then performs experiments, collects, and analyzes the data, interprets the findings, and ultimately, determines if the findings support or negate the original hypothesis.  

Let’s look at each step for creating an effective, testable, and good research hypothesis :  

  • Identify a research problem or question: Start by identifying a specific research problem.   
  • Review the literature: Conduct an in-depth review of the existing literature related to the research problem to grasp the current knowledge and gaps in the field.   
  • Formulate a clear and testable hypothesis : Based on the research question, use existing knowledge to form a clear and testable hypothesis . The hypothesis should state a predicted relationship between two or more variables that can be measured and manipulated. Improve the original draft till it is clear and meaningful.  
  • State the null hypothesis: The null hypothesis is a statement that there is no relationship between the variables you are studying.   
  • Define the population and sample: Clearly define the population you are studying and the sample you will be using for your research.  
  • Select appropriate methods for testing the hypothesis: Select appropriate research methods, such as experiments, surveys, or observational studies, which will allow you to test your research hypothesis .  

Remember that creating a research hypothesis is an iterative process, i.e., you might have to revise it based on the data you collect. You may need to test and reject several hypotheses before answering the research problem.  

How to write a research hypothesis  

When you start writing a research hypothesis , you use an “if–then” statement format, which states the predicted relationship between two or more variables. Clearly identify the independent variables (the variables being changed) and the dependent variables (the variables being measured), as well as the population you are studying. Review and revise your hypothesis as needed.  

An example of a research hypothesis in this format is as follows:  

“ If [athletes] follow [cold water showers daily], then their [endurance] increases.”  

Population: athletes  

Independent variable: daily cold water showers  

Dependent variable: endurance  

You may have understood the characteristics of a good hypothesis . But note that a research hypothesis is not always confirmed; a researcher should be prepared to accept or reject the hypothesis based on the study findings.  

difference between statement and hypothesis

Research hypothesis checklist  

Following from above, here is a 10-point checklist for a good research hypothesis :  

  • Testable: A research hypothesis should be able to be tested via experimentation or observation.  
  • Specific: A research hypothesis should clearly state the relationship between the variables being studied.  
  • Based on prior research: A research hypothesis should be based on existing knowledge and previous research in the field.  
  • Falsifiable: A research hypothesis should be able to be disproven through testing.  
  • Clear and concise: A research hypothesis should be stated in a clear and concise manner.  
  • Logical: A research hypothesis should be logical and consistent with current understanding of the subject.  
  • Relevant: A research hypothesis should be relevant to the research question and objectives.  
  • Feasible: A research hypothesis should be feasible to test within the scope of the study.  
  • Reflects the population: A research hypothesis should consider the population or sample being studied.  
  • Uncomplicated: A good research hypothesis is written in a way that is easy for the target audience to understand.  

By following this research hypothesis checklist , you will be able to create a research hypothesis that is strong, well-constructed, and more likely to yield meaningful results.  

Research hypothesis: What it is, how to write it, types, and examples

Types of research hypothesis  

Different types of research hypothesis are used in scientific research:  

1. Null hypothesis:

A null hypothesis states that there is no change in the dependent variable due to changes to the independent variable. This means that the results are due to chance and are not significant. A null hypothesis is denoted as H0 and is stated as the opposite of what the alternative hypothesis states.   

Example: “ The newly identified virus is not zoonotic .”  

2. Alternative hypothesis:

This states that there is a significant difference or relationship between the variables being studied. It is denoted as H1 or Ha and is usually accepted or rejected in favor of the null hypothesis.  

Example: “ The newly identified virus is zoonotic .”  

3. Directional hypothesis :

This specifies the direction of the relationship or difference between variables; therefore, it tends to use terms like increase, decrease, positive, negative, more, or less.   

Example: “ The inclusion of intervention X decreases infant mortality compared to the original treatment .”   

4. Non-directional hypothesis:

While it does not predict the exact direction or nature of the relationship between the two variables, a non-directional hypothesis states the existence of a relationship or difference between variables but not the direction, nature, or magnitude of the relationship. A non-directional hypothesis may be used when there is no underlying theory or when findings contradict previous research.  

Example, “ Cats and dogs differ in the amount of affection they express .”  

5. Simple hypothesis :

A simple hypothesis only predicts the relationship between one independent and another independent variable.  

Example: “ Applying sunscreen every day slows skin aging .”  

6 . Complex hypothesis :

A complex hypothesis states the relationship or difference between two or more independent and dependent variables.   

Example: “ Applying sunscreen every day slows skin aging, reduces sun burn, and reduces the chances of skin cancer .” (Here, the three dependent variables are slowing skin aging, reducing sun burn, and reducing the chances of skin cancer.)  

7. Associative hypothesis:  

An associative hypothesis states that a change in one variable results in the change of the other variable. The associative hypothesis defines interdependency between variables.  

Example: “ There is a positive association between physical activity levels and overall health .”  

8 . Causal hypothesis:

A causal hypothesis proposes a cause-and-effect interaction between variables.  

Example: “ Long-term alcohol use causes liver damage .”  

Note that some of the types of research hypothesis mentioned above might overlap. The types of hypothesis chosen will depend on the research question and the objective of the study.  

difference between statement and hypothesis

Research hypothesis examples  

Here are some good research hypothesis examples :  

“The use of a specific type of therapy will lead to a reduction in symptoms of depression in individuals with a history of major depressive disorder.”  

“Providing educational interventions on healthy eating habits will result in weight loss in overweight individuals.”  

“Plants that are exposed to certain types of music will grow taller than those that are not exposed to music.”  

“The use of the plant growth regulator X will lead to an increase in the number of flowers produced by plants.”  

Characteristics that make a research hypothesis weak are unclear variables, unoriginality, being too general or too vague, and being untestable. A weak hypothesis leads to weak research and improper methods.   

Some bad research hypothesis examples (and the reasons why they are “bad”) are as follows:  

“This study will show that treatment X is better than any other treatment . ” (This statement is not testable, too broad, and does not consider other treatments that may be effective.)  

“This study will prove that this type of therapy is effective for all mental disorders . ” (This statement is too broad and not testable as mental disorders are complex and different disorders may respond differently to different types of therapy.)  

“Plants can communicate with each other through telepathy . ” (This statement is not testable and lacks a scientific basis.)  

Importance of testable hypothesis  

If a research hypothesis is not testable, the results will not prove or disprove anything meaningful. The conclusions will be vague at best. A testable hypothesis helps a researcher focus on the study outcome and understand the implication of the question and the different variables involved. A testable hypothesis helps a researcher make precise predictions based on prior research.  

To be considered testable, there must be a way to prove that the hypothesis is true or false; further, the results of the hypothesis must be reproducible.  

Research hypothesis: What it is, how to write it, types, and examples

Frequently Asked Questions (FAQs) on research hypothesis  

1. What is the difference between research question and research hypothesis ?  

A research question defines the problem and helps outline the study objective(s). It is an open-ended statement that is exploratory or probing in nature. Therefore, it does not make predictions or assumptions. It helps a researcher identify what information to collect. A research hypothesis , however, is a specific, testable prediction about the relationship between variables. Accordingly, it guides the study design and data analysis approach.

2. When to reject null hypothesis ?

A null hypothesis should be rejected when the evidence from a statistical test shows that it is unlikely to be true. This happens when the test statistic (e.g., p -value) is less than the defined significance level (e.g., 0.05). Rejecting the null hypothesis does not necessarily mean that the alternative hypothesis is true; it simply means that the evidence found is not compatible with the null hypothesis.  

3. How can I be sure my hypothesis is testable?  

A testable hypothesis should be specific and measurable, and it should state a clear relationship between variables that can be tested with data. To ensure that your hypothesis is testable, consider the following:  

  • Clearly define the key variables in your hypothesis. You should be able to measure and manipulate these variables in a way that allows you to test the hypothesis.  
  • The hypothesis should predict a specific outcome or relationship between variables that can be measured or quantified.   
  • You should be able to collect the necessary data within the constraints of your study.  
  • It should be possible for other researchers to replicate your study, using the same methods and variables.   
  • Your hypothesis should be testable by using appropriate statistical analysis techniques, so you can draw conclusions, and make inferences about the population from the sample data.  
  • The hypothesis should be able to be disproven or rejected through the collection of data.  

4. How do I revise my research hypothesis if my data does not support it?  

If your data does not support your research hypothesis , you will need to revise it or develop a new one. You should examine your data carefully and identify any patterns or anomalies, re-examine your research question, and/or revisit your theory to look for any alternative explanations for your results. Based on your review of the data, literature, and theories, modify your research hypothesis to better align it with the results you obtained. Use your revised hypothesis to guide your research design and data collection. It is important to remain objective throughout the process.  

5. I am performing exploratory research. Do I need to formulate a research hypothesis?  

As opposed to “confirmatory” research, where a researcher has some idea about the relationship between the variables under investigation, exploratory research (or hypothesis-generating research) looks into a completely new topic about which limited information is available. Therefore, the researcher will not have any prior hypotheses. In such cases, a researcher will need to develop a post-hoc hypothesis. A post-hoc research hypothesis is generated after these results are known.  

6. How is a research hypothesis different from a research question?

A research question is an inquiry about a specific topic or phenomenon, typically expressed as a question. It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis.

7. Can a research hypothesis change during the research process?

Yes, research hypotheses can change during the research process. As researchers collect and analyze data, new insights and information may emerge that require modification or refinement of the initial hypotheses. This can be due to unexpected findings, limitations in the original hypotheses, or the need to explore additional dimensions of the research topic. Flexibility is crucial in research, allowing for adaptation and adjustment of hypotheses to align with the evolving understanding of the subject matter.

8. How many hypotheses should be included in a research study?

The number of research hypotheses in a research study varies depending on the nature and scope of the research. It is not necessary to have multiple hypotheses in every study. Some studies may have only one primary hypothesis, while others may have several related hypotheses. The number of hypotheses should be determined based on the research objectives, research questions, and the complexity of the research topic. It is important to ensure that the hypotheses are focused, testable, and directly related to the research aims.

9. Can research hypotheses be used in qualitative research?

Yes, research hypotheses can be used in qualitative research, although they are more commonly associated with quantitative research. In qualitative research, hypotheses may be formulated as tentative or exploratory statements that guide the investigation. Instead of testing hypotheses through statistical analysis, qualitative researchers may use the hypotheses to guide data collection and analysis, seeking to uncover patterns, themes, or relationships within the qualitative data. The emphasis in qualitative research is often on generating insights and understanding rather than confirming or rejecting specific research hypotheses through statistical testing.

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

Peer Review Basics: Who is Reviewer 2?

How to Write a Dissertation: A Beginner’s Guide 

Back to school 2024 sale

Back to School – Lock-in All Access Pack for a Year at the Best Price

Frequently asked questions

What is a hypothesis.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Frequently asked questions: Methodology

Attrition refers to participants leaving a study. It always happens to some extent—for example, in randomized controlled trials for medical research.

Differential attrition occurs when attrition or dropout rates differ systematically between the intervention and the control group . As a result, the characteristics of the participants who drop out differ from the characteristics of those who stay in the study. Because of this, study results may be biased .

Action research is conducted in order to solve a particular issue immediately, while case studies are often conducted over a longer period of time and focus more on observing and analyzing a particular ongoing phenomenon.

Action research is focused on solving a problem or informing individual and community-based knowledge in a way that impacts teaching, learning, and other related processes. It is less focused on contributing theoretical input, instead producing actionable input.

Action research is particularly popular with educators as a form of systematic inquiry because it prioritizes reflection and bridges the gap between theory and practice. Educators are able to simultaneously investigate an issue as they solve it, and the method is very iterative and flexible.

A cycle of inquiry is another name for action research . It is usually visualized in a spiral shape following a series of steps, such as “planning → acting → observing → reflecting.”

To make quantitative observations , you need to use instruments that are capable of measuring the quantity you want to observe. For example, you might use a ruler to measure the length of an object or a thermometer to measure its temperature.

Criterion validity and construct validity are both types of measurement validity . In other words, they both show you how accurately a method measures something.

While construct validity is the degree to which a test or other measurement method measures what it claims to measure, criterion validity is the degree to which a test can predictively (in the future) or concurrently (in the present) measure something.

Construct validity is often considered the overarching type of measurement validity . You need to have face validity , content validity , and criterion validity in order to achieve construct validity.

Convergent validity and discriminant validity are both subtypes of construct validity . Together, they help you evaluate whether a test measures the concept it was designed to measure.

  • Convergent validity indicates whether a test that is designed to measure a particular construct correlates with other tests that assess the same or similar construct.
  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related. This type of validity is also called divergent validity .

You need to assess both in order to demonstrate construct validity. Neither one alone is sufficient for establishing construct validity.

  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related

Content validity shows you how accurately a test or other measurement method taps  into the various aspects of the specific construct you are researching.

In other words, it helps you answer the question: “does the test measure all aspects of the construct I want to measure?” If it does, then the test has high content validity.

The higher the content validity, the more accurate the measurement of the construct.

If the test fails to include parts of the construct, or irrelevant parts are included, the validity of the instrument is threatened, which brings your results into question.

Face validity and content validity are similar in that they both evaluate how suitable the content of a test is. The difference is that face validity is subjective, and assesses content at surface level.

When a test has strong face validity, anyone would agree that the test’s questions appear to measure what they are intended to measure.

For example, looking at a 4th grade math test consisting of problems in which students have to add and multiply, most people would agree that it has strong face validity (i.e., it looks like a math test).

On the other hand, content validity evaluates how well a test represents all the aspects of a topic. Assessing content validity is more systematic and relies on expert evaluation. of each question, analyzing whether each one covers the aspects that the test was designed to cover.

A 4th grade math test would have high content validity if it covered all the skills taught in that grade. Experts(in this case, math teachers), would have to evaluate the content validity by comparing the test to the learning objectives.

Snowball sampling is a non-probability sampling method . Unlike probability sampling (which involves some form of random selection ), the initial individuals selected to be studied are the ones who recruit new participants.

Because not every member of the target population has an equal chance of being recruited into the sample, selection in snowball sampling is non-random.

Snowball sampling is a non-probability sampling method , where there is not an equal chance for every member of the population to be included in the sample .

This means that you cannot use inferential statistics and make generalizations —often the goal of quantitative research . As such, a snowball sample is not representative of the target population and is usually a better fit for qualitative research .

Snowball sampling relies on the use of referrals. Here, the researcher recruits one or more initial participants, who then recruit the next ones.

Participants share similar characteristics and/or know each other. Because of this, not every member of the population has an equal chance of being included in the sample, giving rise to sampling bias .

Snowball sampling is best used in the following cases:

  • If there is no sampling frame available (e.g., people with a rare disease)
  • If the population of interest is hard to access or locate (e.g., people experiencing homelessness)
  • If the research focuses on a sensitive topic (e.g., extramarital affairs)

The reproducibility and replicability of a study can be ensured by writing a transparent, detailed method section and using clear, unambiguous language.

Reproducibility and replicability are related terms.

  • Reproducing research entails reanalyzing the existing data in the same manner.
  • Replicating (or repeating ) the research entails reconducting the entire analysis, including the collection of new data . 
  • A successful reproduction shows that the data analyses were conducted in a fair and honest manner.
  • A successful replication shows that the reliability of the results is high.

Stratified sampling and quota sampling both involve dividing the population into subgroups and selecting units from each subgroup. The purpose in both cases is to select a representative sample and/or to allow comparisons between subgroups.

The main difference is that in stratified sampling, you draw a random sample from each subgroup ( probability sampling ). In quota sampling you select a predetermined number or proportion of units, in a non-random manner ( non-probability sampling ).

Purposive and convenience sampling are both sampling methods that are typically used in qualitative data collection.

A convenience sample is drawn from a source that is conveniently accessible to the researcher. Convenience sampling does not distinguish characteristics among the participants. On the other hand, purposive sampling focuses on selecting participants possessing characteristics associated with the research study.

The findings of studies based on either convenience or purposive sampling can only be generalized to the (sub)population from which the sample is drawn, and not to the entire population.

Random sampling or probability sampling is based on random selection. This means that each unit has an equal chance (i.e., equal probability) of being included in the sample.

On the other hand, convenience sampling involves stopping people at random, which means that not everyone has an equal chance of being selected depending on the place, time, or day you are collecting your data.

Convenience sampling and quota sampling are both non-probability sampling methods. They both use non-random criteria like availability, geographical proximity, or expert knowledge to recruit study participants.

However, in convenience sampling, you continue to sample units or cases until you reach the required sample size.

In quota sampling, you first need to divide your population of interest into subgroups (strata) and estimate their proportions (quota) in the population. Then you can start your data collection, using convenience sampling to recruit participants, until the proportions in each subgroup coincide with the estimated proportions in the population.

A sampling frame is a list of every member in the entire population . It is important that the sampling frame is as complete as possible, so that your sample accurately reflects your population.

Stratified and cluster sampling may look similar, but bear in mind that groups created in cluster sampling are heterogeneous , so the individual characteristics in the cluster vary. In contrast, groups created in stratified sampling are homogeneous , as units share characteristics.

Relatedly, in cluster sampling you randomly select entire groups and include all units of each group in your sample. However, in stratified sampling, you select some units of all groups and include them in your sample. In this way, both methods can ensure that your sample is representative of the target population .

A systematic review is secondary research because it uses existing research. You don’t collect new data yourself.

The key difference between observational studies and experimental designs is that a well-done observational study does not influence the responses of participants, while experiments do have some sort of treatment condition applied to at least some participants by random assignment .

An observational study is a great choice for you if your research question is based purely on observations. If there are ethical, logistical, or practical concerns that prevent you from conducting a traditional experiment , an observational study may be a good choice. In an observational study, there is no interference or manipulation of the research subjects, as well as no control or treatment groups .

It’s often best to ask a variety of people to review your measurements. You can ask experts, such as other researchers, or laypeople, such as potential participants, to judge the face validity of tests.

While experts have a deep understanding of research methods , the people you’re studying can provide you with valuable insights you may have missed otherwise.

Face validity is important because it’s a simple first step to measuring the overall validity of a test or technique. It’s a relatively intuitive, quick, and easy way to start checking whether a new measure seems useful at first glance.

Good face validity means that anyone who reviews your measure says that it seems to be measuring what it’s supposed to. With poor face validity, someone reviewing your measure may be left confused about what you’re measuring and why you’re using this method.

Face validity is about whether a test appears to measure what it’s supposed to measure. This type of validity is concerned with whether a measure seems relevant and appropriate for what it’s assessing only on the surface.

Statistical analyses are often applied to test validity with data from your measures. You test convergent validity and discriminant validity with correlations to see if results from your test are positively or negatively related to those of other established tests.

You can also use regression analyses to assess whether your measure is actually predictive of outcomes that you expect it to predict theoretically. A regression analysis that supports your expectations strengthens your claim of construct validity .

When designing or evaluating a measure, construct validity helps you ensure you’re actually measuring the construct you’re interested in. If you don’t have construct validity, you may inadvertently measure unrelated or distinct constructs and lose precision in your research.

Construct validity is often considered the overarching type of measurement validity ,  because it covers all of the other types. You need to have face validity , content validity , and criterion validity to achieve construct validity.

Construct validity is about how well a test measures the concept it was designed to evaluate. It’s one of four types of measurement validity , which includes construct validity, face validity , and criterion validity.

There are two subtypes of construct validity.

  • Convergent validity : The extent to which your measure corresponds to measures of related constructs
  • Discriminant validity : The extent to which your measure is unrelated or negatively related to measures of distinct constructs

Naturalistic observation is a valuable tool because of its flexibility, external validity , and suitability for topics that can’t be studied in a lab setting.

The downsides of naturalistic observation include its lack of scientific control , ethical considerations , and potential for bias from observers and subjects.

Naturalistic observation is a qualitative research method where you record the behaviors of your research subjects in real world settings. You avoid interfering or influencing anything in a naturalistic observation.

You can think of naturalistic observation as “people watching” with a purpose.

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it “depends” on your independent variable.

In statistics, dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation).

As a rule of thumb, questions related to thoughts, beliefs, and feelings work well in focus groups. Take your time formulating strong questions, paying special attention to phrasing. Be careful to avoid leading questions , which can bias your responses.

Overall, your focus group questions should be:

  • Open-ended and flexible
  • Impossible to answer with “yes” or “no” (questions that start with “why” or “how” are often best)
  • Unambiguous, getting straight to the point while still stimulating discussion
  • Unbiased and neutral

A structured interview is a data collection method that relies on asking questions in a set order to collect data on a topic. They are often quantitative in nature. Structured interviews are best used when: 

  • You already have a very clear understanding of your topic. Perhaps significant research has already been conducted, or you have done some prior research yourself, but you already possess a baseline for designing strong structured questions.
  • You are constrained in terms of time or resources and need to analyze your data quickly and efficiently.
  • Your research question depends on strong parity between participants, with environmental conditions held constant.

More flexible interview options include semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias is the tendency for interview participants to give responses that will be viewed favorably by the interviewer or other participants. It occurs in all types of interviews and surveys , but is most common in semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias can be mitigated by ensuring participants feel at ease and comfortable sharing their views. Make sure to pay attention to your own body language and any physical or verbal cues, such as nodding or widening your eyes.

This type of bias can also occur in observations if the participants know they’re being observed. They might alter their behavior accordingly.

The interviewer effect is a type of bias that emerges when a characteristic of an interviewer (race, age, gender identity, etc.) influences the responses given by the interviewee.

There is a risk of an interviewer effect in all types of interviews , but it can be mitigated by writing really high-quality interview questions.

A semi-structured interview is a blend of structured and unstructured types of interviews. Semi-structured interviews are best used when:

  • You have prior interview experience. Spontaneous questions are deceptively challenging, and it’s easy to accidentally ask a leading question or make a participant uncomfortable.
  • Your research question is exploratory in nature. Participant answers can guide future research questions and help you develop a more robust knowledge base for future research.

An unstructured interview is the most flexible type of interview, but it is not always the best fit for your research topic.

Unstructured interviews are best used when:

  • You are an experienced interviewer and have a very strong background in your research topic, since it is challenging to ask spontaneous, colloquial questions.
  • Your research question is exploratory in nature. While you may have developed hypotheses, you are open to discovering new or shifting viewpoints through the interview process.
  • You are seeking descriptive data, and are ready to ask questions that will deepen and contextualize your initial thoughts and hypotheses.
  • Your research depends on forming connections with your participants and making them feel comfortable revealing deeper emotions, lived experiences, or thoughts.

The four most common types of interviews are:

  • Structured interviews : The questions are predetermined in both topic and order. 
  • Semi-structured interviews : A few questions are predetermined, but other questions aren’t planned.
  • Unstructured interviews : None of the questions are predetermined.
  • Focus group interviews : The questions are presented to a group instead of one individual.

Deductive reasoning is commonly used in scientific research, and it’s especially associated with quantitative research .

In research, you might have come across something called the hypothetico-deductive method . It’s the scientific method of testing hypotheses to check whether your predictions are substantiated by real-world data.

Deductive reasoning is a logical approach where you progress from general ideas to specific conclusions. It’s often contrasted with inductive reasoning , where you start with specific observations and form general conclusions.

Deductive reasoning is also called deductive logic.

There are many different types of inductive reasoning that people use formally or informally.

Here are a few common types:

  • Inductive generalization : You use observations about a sample to come to a conclusion about the population it came from.
  • Statistical generalization: You use specific numbers about samples to make statements about populations.
  • Causal reasoning: You make cause-and-effect links between different things.
  • Sign reasoning: You make a conclusion about a correlational relationship between different things.
  • Analogical reasoning: You make a conclusion about something based on its similarities to something else.

Inductive reasoning is a bottom-up approach, while deductive reasoning is top-down.

Inductive reasoning takes you from the specific to the general, while in deductive reasoning, you make inferences by going from general premises to specific conclusions.

In inductive research , you start by making observations or gathering data. Then, you take a broad scan of your data and search for patterns. Finally, you make general conclusions that you might incorporate into theories.

Inductive reasoning is a method of drawing conclusions by going from the specific to the general. It’s usually contrasted with deductive reasoning, where you proceed from general information to specific conclusions.

Inductive reasoning is also called inductive logic or bottom-up reasoning.

Triangulation can help:

  • Reduce research bias that comes from using a single method, theory, or investigator
  • Enhance validity by approaching the same topic with different tools
  • Establish credibility by giving you a complete picture of the research problem

But triangulation can also pose problems:

  • It’s time-consuming and labor-intensive, often involving an interdisciplinary team.
  • Your results may be inconsistent or even contradictory.

There are four main types of triangulation :

  • Data triangulation : Using data from different times, spaces, and people
  • Investigator triangulation : Involving multiple researchers in collecting or analyzing data
  • Theory triangulation : Using varying theoretical perspectives in your research
  • Methodological triangulation : Using different methodologies to approach the same topic

Many academic fields use peer review , largely to determine whether a manuscript is suitable for publication. Peer review enhances the credibility of the published manuscript.

However, peer review is also common in non-academic settings. The United Nations, the European Union, and many individual nations use peer review to evaluate grant applications. It is also widely used in medical and health-related fields as a teaching or quality-of-care measure. 

Peer assessment is often used in the classroom as a pedagogical tool. Both receiving feedback and providing it are thought to enhance the learning process, helping students think critically and collaboratively.

Peer review can stop obviously problematic, falsified, or otherwise untrustworthy research from being published. It also represents an excellent opportunity to get feedback from renowned experts in your field. It acts as a first defense, helping you ensure your argument is clear and that there are no gaps, vague terms, or unanswered questions for readers who weren’t involved in the research process.

Peer-reviewed articles are considered a highly credible source due to this stringent process they go through before publication.

In general, the peer review process follows the following steps: 

  • First, the author submits the manuscript to the editor.
  • Reject the manuscript and send it back to author, or 
  • Send it onward to the selected peer reviewer(s) 
  • Next, the peer review process occurs. The reviewer provides feedback, addressing any major or minor issues with the manuscript, and gives their advice regarding what edits should be made. 
  • Lastly, the edited manuscript is sent back to the author. They input the edits, and resubmit it to the editor for publication.

Exploratory research is often used when the issue you’re studying is new or when the data collection process is challenging for some reason.

You can use exploratory research if you have a general idea or a specific question that you want to study but there is no preexisting knowledge or paradigm with which to study it.

Exploratory research is a methodology approach that explores research questions that have not previously been studied in depth. It is often used when the issue you’re studying is new, or the data collection process is challenging in some way.

Explanatory research is used to investigate how or why a phenomenon occurs. Therefore, this type of research is often one of the first stages in the research process , serving as a jumping-off point for future research.

Exploratory research aims to explore the main aspects of an under-researched problem, while explanatory research aims to explain the causes and consequences of a well-defined problem.

Explanatory research is a research method used to investigate how or why something occurs when only a small amount of information is available pertaining to that topic. It can help you increase your understanding of a given topic.

Clean data are valid, accurate, complete, consistent, unique, and uniform. Dirty data include inconsistencies and errors.

Dirty data can come from any part of the research process, including poor research design , inappropriate measurement materials, or flawed data entry.

Data cleaning takes place between data collection and data analyses. But you can use some methods even before collecting data.

For clean data, you should start by designing measures that collect valid data. Data validation at the time of data entry or collection helps you minimize the amount of data cleaning you’ll need to do.

After data collection, you can use data standardization and data transformation to clean your data. You’ll also deal with any missing values, outliers, and duplicate values.

Every dataset requires different techniques to clean dirty data , but you need to address these issues in a systematic way. You focus on finding and resolving data points that don’t agree or fit with the rest of your dataset.

These data might be missing values, outliers, duplicate values, incorrectly formatted, or irrelevant. You’ll start with screening and diagnosing your data. Then, you’ll often standardize and accept or remove data to make your dataset consistent and valid.

Data cleaning is necessary for valid and appropriate analyses. Dirty data contain inconsistencies or errors , but cleaning your data helps you minimize or resolve these.

Without data cleaning, you could end up with a Type I or II error in your conclusion. These types of erroneous conclusions can be practically significant with important consequences, because they lead to misplaced investments or missed opportunities.

Data cleaning involves spotting and resolving potential data inconsistencies or errors to improve your data quality. An error is any value (e.g., recorded weight) that doesn’t reflect the true value (e.g., actual weight) of something that’s being measured.

In this process, you review, analyze, detect, modify, or remove “dirty” data to make your dataset “clean.” Data cleaning is also called data cleansing or data scrubbing.

Research misconduct means making up or falsifying data, manipulating data analyses, or misrepresenting results in research reports. It’s a form of academic fraud.

These actions are committed intentionally and can have serious consequences; research misconduct is not a simple mistake or a point of disagreement but a serious ethical failure.

Anonymity means you don’t know who the participants are, while confidentiality means you know who they are but remove identifying information from your research report. Both are important ethical considerations .

You can only guarantee anonymity by not collecting any personally identifying information—for example, names, phone numbers, email addresses, IP addresses, physical characteristics, photos, or videos.

You can keep data confidential by using aggregate information in your research report, so that you only refer to groups of participants rather than individuals.

Research ethics matter for scientific integrity, human rights and dignity, and collaboration between science and society. These principles make sure that participation in studies is voluntary, informed, and safe.

Ethical considerations in research are a set of principles that guide your research designs and practices. These principles include voluntary participation, informed consent, anonymity, confidentiality, potential for harm, and results communication.

Scientists and researchers must always adhere to a certain code of conduct when collecting data from others .

These considerations protect the rights of research participants, enhance research validity , and maintain scientific integrity.

In multistage sampling , you can use probability or non-probability sampling methods .

For a probability sample, you have to conduct probability sampling at every stage.

You can mix it up by using simple random sampling , systematic sampling , or stratified sampling to select units at different stages, depending on what is applicable and relevant to your study.

Multistage sampling can simplify data collection when you have large, geographically spread samples, and you can obtain a probability sample without a complete sampling frame.

But multistage sampling may not lead to a representative sample, and larger samples are needed for multistage samples to achieve the statistical properties of simple random samples .

These are four of the most common mixed methods designs :

  • Convergent parallel: Quantitative and qualitative data are collected at the same time and analyzed separately. After both analyses are complete, compare your results to draw overall conclusions. 
  • Embedded: Quantitative and qualitative data are collected at the same time, but within a larger quantitative or qualitative design. One type of data is secondary to the other.
  • Explanatory sequential: Quantitative data is collected and analyzed first, followed by qualitative data. You can use this design if you think your qualitative data will explain and contextualize your quantitative findings.
  • Exploratory sequential: Qualitative data is collected and analyzed first, followed by quantitative data. You can use this design if you think the quantitative data will confirm or validate your qualitative findings.

Triangulation in research means using multiple datasets, methods, theories and/or investigators to address a research question. It’s a research strategy that can help you enhance the validity and credibility of your findings.

Triangulation is mainly used in qualitative research , but it’s also commonly applied in quantitative research . Mixed methods research always uses triangulation.

In multistage sampling , or multistage cluster sampling, you draw a sample from a population using smaller and smaller groups at each stage.

This method is often used to collect data from a large, geographically spread group of people in national surveys, for example. You take advantage of hierarchical groupings (e.g., from state to city to neighborhood) to create a sample that’s less expensive and time-consuming to collect data from.

No, the steepness or slope of the line isn’t related to the correlation coefficient value. The correlation coefficient only tells you how closely your data fit on a line, so two datasets with the same correlation coefficient can have very different slopes.

To find the slope of the line, you’ll need to perform a regression analysis .

Correlation coefficients always range between -1 and 1.

The sign of the coefficient tells you the direction of the relationship: a positive value means the variables change together in the same direction, while a negative value means they change together in opposite directions.

The absolute value of a number is equal to the number without its sign. The absolute value of a correlation coefficient tells you the magnitude of the correlation: the greater the absolute value, the stronger the correlation.

These are the assumptions your data must meet if you want to use Pearson’s r :

  • Both variables are on an interval or ratio level of measurement
  • Data from both variables follow normal distributions
  • Your data have no outliers
  • Your data is from a random or representative sample
  • You expect a linear relationship between the two variables

Quantitative research designs can be divided into two main categories:

  • Correlational and descriptive designs are used to investigate characteristics, averages, trends, and associations between variables.
  • Experimental and quasi-experimental designs are used to test causal relationships .

Qualitative research designs tend to be more flexible. Common types of qualitative design include case study , ethnography , and grounded theory designs.

A well-planned research design helps ensure that your methods match your research aims, that you collect high-quality data, and that you use the right kind of analysis to answer your questions, utilizing credible sources . This allows you to draw valid , trustworthy conclusions.

The priorities of a research design can vary depending on the field, but you usually have to specify:

  • Your research questions and/or hypotheses
  • Your overall approach (e.g., qualitative or quantitative )
  • The type of design you’re using (e.g., a survey , experiment , or case study )
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods (e.g., questionnaires , observations)
  • Your data collection procedures (e.g., operationalization , timing and data management)
  • Your data analysis methods (e.g., statistical tests  or thematic analysis )

A research design is a strategy for answering your   research question . It defines your overall approach and determines how you will collect and analyze data.

Questionnaires can be self-administered or researcher-administered.

Self-administered questionnaires can be delivered online or in paper-and-pen formats, in person or through mail. All questions are standardized so that all respondents receive the same questions with identical wording.

Researcher-administered questionnaires are interviews that take place by phone, in-person, or online between researchers and respondents. You can gain deeper insights by clarifying questions for respondents or asking follow-up questions.

You can organize the questions logically, with a clear progression from simple to complex, or randomly between respondents. A logical flow helps respondents process the questionnaire easier and quicker, but it may lead to bias. Randomization can minimize the bias from order effects.

Closed-ended, or restricted-choice, questions offer respondents a fixed set of choices to select from. These questions are easier to answer quickly.

Open-ended or long-form questions allow respondents to answer in their own words. Because there are no restrictions on their choices, respondents can answer in ways that researchers may not have otherwise considered.

A questionnaire is a data collection tool or instrument, while a survey is an overarching research method that involves collecting and analyzing data from people using questionnaires.

The third variable and directionality problems are two main reasons why correlation isn’t causation .

The third variable problem means that a confounding variable affects both variables to make them seem causally related when they are not.

The directionality problem is when two variables correlate and might actually have a causal relationship, but it’s impossible to conclude which variable causes changes in the other.

Correlation describes an association between variables : when one variable changes, so does the other. A correlation is a statistical indicator of the relationship between variables.

Causation means that changes in one variable brings about changes in the other (i.e., there is a cause-and-effect relationship between variables). The two variables are correlated with each other, and there’s also a causal link between them.

While causation and correlation can exist simultaneously, correlation does not imply causation. In other words, correlation is simply a relationship where A relates to B—but A doesn’t necessarily cause B to happen (or vice versa). Mistaking correlation for causation is a common error and can lead to false cause fallacy .

Controlled experiments establish causality, whereas correlational studies only show associations between variables.

  • In an experimental design , you manipulate an independent variable and measure its effect on a dependent variable. Other variables are controlled so they can’t impact the results.
  • In a correlational design , you measure variables without manipulating any of them. You can test whether your variables change together, but you can’t be sure that one variable caused a change in another.

In general, correlational research is high in external validity while experimental research is high in internal validity .

A correlation is usually tested for two variables at a time, but you can test correlations between three or more variables.

A correlation coefficient is a single number that describes the strength and direction of the relationship between your variables.

Different types of correlation coefficients might be appropriate for your data based on their levels of measurement and distributions . The Pearson product-moment correlation coefficient (Pearson’s r ) is commonly used to assess a linear relationship between two quantitative variables.

A correlational research design investigates relationships between two variables (or more) without the researcher controlling or manipulating any of them. It’s a non-experimental type of quantitative research .

A correlation reflects the strength and/or direction of the association between two or more variables.

  • A positive correlation means that both variables change in the same direction.
  • A negative correlation means that the variables change in opposite directions.
  • A zero correlation means there’s no relationship between the variables.

Random error  is almost always present in scientific studies, even in highly controlled settings. While you can’t eradicate it completely, you can reduce random error by taking repeated measurements, using a large sample, and controlling extraneous variables .

You can avoid systematic error through careful design of your sampling , data collection , and analysis procedures. For example, use triangulation to measure your variables using multiple methods; regularly calibrate instruments or procedures; use random sampling and random assignment ; and apply masking (blinding) where possible.

Systematic error is generally a bigger problem in research.

With random error, multiple measurements will tend to cluster around the true value. When you’re collecting data from a large sample , the errors in different directions will cancel each other out.

Systematic errors are much more problematic because they can skew your data away from the true value. This can lead you to false conclusions ( Type I and II errors ) about the relationship between the variables you’re studying.

Random and systematic error are two types of measurement error.

Random error is a chance difference between the observed and true values of something (e.g., a researcher misreading a weighing scale records an incorrect measurement).

Systematic error is a consistent or proportional difference between the observed and true values of something (e.g., a miscalibrated scale consistently records weights as higher than they actually are).

On graphs, the explanatory variable is conventionally placed on the x-axis, while the response variable is placed on the y-axis.

  • If you have quantitative variables , use a scatterplot or a line graph.
  • If your response variable is categorical, use a scatterplot or a line graph.
  • If your explanatory variable is categorical, use a bar graph.

The term “ explanatory variable ” is sometimes preferred over “ independent variable ” because, in real world contexts, independent variables are often influenced by other variables. This means they aren’t totally independent.

Multiple independent variables may also be correlated with each other, so “explanatory variables” is a more appropriate term.

The difference between explanatory and response variables is simple:

  • An explanatory variable is the expected cause, and it explains the results.
  • A response variable is the expected effect, and it responds to other variables.

In a controlled experiment , all extraneous variables are held constant so that they can’t influence the results. Controlled experiments require:

  • A control group that receives a standard treatment, a fake treatment, or no treatment.
  • Random assignment of participants to ensure the groups are equivalent.

Depending on your study topic, there are various other methods of controlling variables .

There are 4 main types of extraneous variables :

  • Demand characteristics : environmental cues that encourage participants to conform to researchers’ expectations.
  • Experimenter effects : unintentional actions by researchers that influence study outcomes.
  • Situational variables : environmental variables that alter participants’ behaviors.
  • Participant variables : any characteristic or aspect of a participant’s background that could affect study results.

An extraneous variable is any variable that you’re not investigating that can potentially affect the dependent variable of your research study.

A confounding variable is a type of extraneous variable that not only affects the dependent variable, but is also related to the independent variable.

In a factorial design, multiple independent variables are tested.

If you test two variables, each level of one independent variable is combined with each level of the other independent variable to create different conditions.

Within-subjects designs have many potential threats to internal validity , but they are also very statistically powerful .

Advantages:

  • Only requires small samples
  • Statistically powerful
  • Removes the effects of individual differences on the outcomes

Disadvantages:

  • Internal validity threats reduce the likelihood of establishing a direct relationship between variables
  • Time-related effects, such as growth, can influence the outcomes
  • Carryover effects mean that the specific order of different treatments affect the outcomes

While a between-subjects design has fewer threats to internal validity , it also requires more participants for high statistical power than a within-subjects design .

  • Prevents carryover effects of learning and fatigue.
  • Shorter study duration.
  • Needs larger samples for high power.
  • Uses more resources to recruit participants, administer sessions, cover costs, etc.
  • Individual differences may be an alternative explanation for results.

Yes. Between-subjects and within-subjects designs can be combined in a single study when you have two or more independent variables (a factorial design). In a mixed factorial design, one variable is altered between subjects and another is altered within subjects.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word “between” means that you’re comparing different conditions between groups, while the word “within” means you’re comparing different conditions within the same group.

Random assignment is used in experiments with a between-groups or independent measures design. In this research design, there’s usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable.

In general, you should always use random assignment in this type of experimental design when it is ethically possible and makes sense for your study topic.

To implement random assignment , assign a unique number to every member of your study’s sample .

Then, you can use a random number generator or a lottery method to randomly assign each number to a control or experimental group. You can also do so manually, by flipping a coin or rolling a dice to randomly assign participants to groups.

Random selection, or random sampling , is a way of selecting members of a population for your study’s sample.

In contrast, random assignment is a way of sorting the sample into control and experimental groups.

Random sampling enhances the external validity or generalizability of your results, while random assignment improves the internal validity of your study.

In experimental research, random assignment is a way of placing participants from your sample into different groups using randomization. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

“Controlling for a variable” means measuring extraneous variables and accounting for them statistically to remove their effects on other variables.

Researchers often model control variable data along with independent and dependent variable data in regression analyses and ANCOVAs . That way, you can isolate the control variable’s effects from the relationship between the variables of interest.

Control variables help you establish a correlational or causal relationship between variables by enhancing internal validity .

If you don’t control relevant extraneous variables , they may influence the outcomes of your study, and you may not be able to demonstrate that your results are really an effect of your independent variable .

A control variable is any variable that’s held constant in a research study. It’s not a variable of interest in the study, but it’s controlled because it could influence the outcomes.

Including mediators and moderators in your research helps you go beyond studying a simple relationship between two variables for a fuller picture of the real world. They are important to consider when studying complex correlational or causal relationships.

Mediators are part of the causal pathway of an effect, and they tell you how or why an effect takes place. Moderators usually help you judge the external validity of your study by identifying the limitations of when the relationship between variables holds.

If something is a mediating variable :

  • It’s caused by the independent variable .
  • It influences the dependent variable
  • When it’s taken into account, the statistical correlation between the independent and dependent variables is higher than when it isn’t considered.

A confounder is a third variable that affects variables of interest and makes them seem related when they are not. In contrast, a mediator is the mechanism of a relationship between two variables: it explains the process by which they are related.

A mediator variable explains the process through which two variables are related, while a moderator variable affects the strength and direction of that relationship.

There are three key steps in systematic sampling :

  • Define and list your population , ensuring that it is not ordered in a cyclical or periodic order.
  • Decide on your sample size and calculate your interval, k , by dividing your population by your target sample size.
  • Choose every k th member of the population as your sample.

Systematic sampling is a probability sampling method where researchers select members of the population at a regular interval – for example, by selecting every 15th person on a list of the population. If the population is in a random order, this can imitate the benefits of simple random sampling .

Yes, you can create a stratified sample using multiple characteristics, but you must ensure that every participant in your study belongs to one and only one subgroup. In this case, you multiply the numbers of subgroups for each characteristic to get the total number of groups.

For example, if you were stratifying by location with three subgroups (urban, rural, or suburban) and marital status with five subgroups (single, divorced, widowed, married, or partnered), you would have 3 x 5 = 15 subgroups.

You should use stratified sampling when your sample can be divided into mutually exclusive and exhaustive subgroups that you believe will take on different mean values for the variable that you’re studying.

Using stratified sampling will allow you to obtain more precise (with lower variance ) statistical estimates of whatever you are trying to measure.

For example, say you want to investigate how income differs based on educational attainment, but you know that this relationship can vary based on race. Using stratified sampling, you can ensure you obtain a large enough sample from each racial group, allowing you to draw more precise conclusions.

In stratified sampling , researchers divide subjects into subgroups called strata based on characteristics that they share (e.g., race, gender, educational attainment).

Once divided, each subgroup is randomly sampled using another probability sampling method.

Cluster sampling is more time- and cost-efficient than other probability sampling methods , particularly when it comes to large samples spread across a wide geographical area.

However, it provides less statistical certainty than other methods, such as simple random sampling , because it is difficult to ensure that your clusters properly represent the population as a whole.

There are three types of cluster sampling : single-stage, double-stage and multi-stage clustering. In all three types, you first divide the population into clusters, then randomly select clusters for use in your sample.

  • In single-stage sampling , you collect data from every unit within the selected clusters.
  • In double-stage sampling , you select a random sample of units from within the clusters.
  • In multi-stage sampling , you repeat the procedure of randomly sampling elements from within the clusters until you have reached a manageable sample.

Cluster sampling is a probability sampling method in which you divide a population into clusters, such as districts or schools, and then randomly select some of these clusters as your sample.

The clusters should ideally each be mini-representations of the population as a whole.

If properly implemented, simple random sampling is usually the best sampling method for ensuring both internal and external validity . However, it can sometimes be impractical and expensive to implement, depending on the size of the population to be studied,

If you have a list of every member of the population and the ability to reach whichever members are selected, you can use simple random sampling.

The American Community Survey  is an example of simple random sampling . In order to collect detailed data on the population of the US, the Census Bureau officials randomly select 3.5 million households per year and use a variety of methods to convince them to fill out the survey.

Simple random sampling is a type of probability sampling in which the researcher randomly selects a subset of participants from a population . Each member of the population has an equal chance of being selected. Data is then collected from as large a percentage as possible of this random subset.

Quasi-experimental design is most useful in situations where it would be unethical or impractical to run a true experiment .

Quasi-experiments have lower internal validity than true experiments, but they often have higher external validity  as they can use real-world interventions instead of artificial laboratory settings.

A quasi-experiment is a type of research design that attempts to establish a cause-and-effect relationship. The main difference with a true experiment is that the groups are not randomly assigned.

Blinding is important to reduce research bias (e.g., observer bias , demand characteristics ) and ensure a study’s internal validity .

If participants know whether they are in a control or treatment group , they may adjust their behavior in ways that affect the outcome that researchers are trying to measure. If the people administering the treatment are aware of group assignment, they may treat participants differently and thus directly or indirectly influence the final results.

  • In a single-blind study , only the participants are blinded.
  • In a double-blind study , both participants and experimenters are blinded.
  • In a triple-blind study , the assignment is hidden not only from participants and experimenters, but also from the researchers analyzing the data.

Blinding means hiding who is assigned to the treatment group and who is assigned to the control group in an experiment .

A true experiment (a.k.a. a controlled experiment) always includes at least one control group that doesn’t receive the experimental treatment.

However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group’s outcomes before and after a treatment (instead of comparing outcomes between different groups).

For strong internal validity , it’s usually best to include a control group if possible. Without a control group, it’s harder to be certain that the outcome was caused by the experimental treatment and not by other variables.

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

Individual Likert-type questions are generally considered ordinal data , because the items have clear rank order, but don’t have an even distribution.

Overall Likert scale scores are sometimes treated as interval data. These scores are considered to have directionality and even spacing between them.

The type of data determines what statistical tests you should use to analyze your data.

A Likert scale is a rating scale that quantitatively assesses opinions, attitudes, or behaviors. It is made up of 4 or more questions that measure a single attitude or trait when response scores are combined.

To use a Likert scale in a survey , you present participants with Likert-type questions or statements, and a continuum of items, usually with 5 or 7 possible responses, to capture their degree of agreement.

In scientific research, concepts are the abstract ideas or phenomena that are being studied (e.g., educational achievement). Variables are properties or characteristics of the concept (e.g., performance at school), while indicators are ways of measuring or quantifying variables (e.g., yearly grade reports).

The process of turning abstract concepts into measurable variables and indicators is called operationalization .

There are various approaches to qualitative data analysis , but they all share five steps in common:

  • Prepare and organize your data.
  • Review and explore your data.
  • Develop a data coding system.
  • Assign codes to the data.
  • Identify recurring themes.

The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .

There are five common approaches to qualitative research :

  • Grounded theory involves collecting data in order to develop new theories.
  • Ethnography involves immersing yourself in a group or organization to understand its culture.
  • Narrative research involves interpreting stories to understand how people make sense of their experiences and perceptions.
  • Phenomenological research involves investigating phenomena through people’s lived experiences.
  • Action research links theory and practice in several cycles to drive innovative changes.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

When conducting research, collecting original data has significant advantages:

  • You can tailor data collection to your specific research aims (e.g. understanding the needs of your consumers or user testing your website)
  • You can control and standardize the process for high reliability and validity (e.g. choosing appropriate measurements and sampling methods )

However, there are also some drawbacks: data collection can be time-consuming, labor-intensive and expensive. In some cases, it’s more efficient to use secondary data that has already been collected by someone else, but the data might be less reliable.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organizations.

There are several methods you can use to decrease the impact of confounding variables on your research: restriction, matching, statistical control and randomization.

In restriction , you restrict your sample by only including certain subjects that have the same values of potential confounding variables.

In matching , you match each of the subjects in your treatment group with a counterpart in the comparison group. The matched subjects have the same values on any potential confounding variables, and only differ in the independent variable .

In statistical control , you include potential confounders as variables in your regression .

In randomization , you randomly assign the treatment (or independent variable) in your study to a sufficiently large number of subjects, which allows you to control for all potential confounding variables.

A confounding variable is closely related to both the independent and dependent variables in a study. An independent variable represents the supposed cause , while the dependent variable is the supposed effect . A confounding variable is a third variable that influences both the independent and dependent variables.

Failing to account for confounding variables can cause you to wrongly estimate the relationship between your independent and dependent variables.

To ensure the internal validity of your research, you must consider the impact of confounding variables. If you fail to account for them, you might over- or underestimate the causal relationship between your independent and dependent variables , or even find a causal relationship where none exists.

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both!

You want to find out how blood sugar levels are affected by drinking diet soda and regular soda, so you conduct an experiment .

  • The type of soda – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of soda.

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

In non-probability sampling , the sample is selected based on non-random criteria, and not every member of the population has a chance of being included.

Common non-probability sampling methods include convenience sampling , voluntary response sampling, purposive sampling , snowball sampling, and quota sampling .

Probability sampling means that every member of the target population has a known chance of being included in the sample.

Probability sampling methods include simple random sampling , systematic sampling , stratified sampling , and cluster sampling .

Using careful research design and sampling procedures can help you avoid sampling bias . Oversampling can be used to correct undercoverage bias .

Some common types of sampling bias include self-selection bias , nonresponse bias , undercoverage bias , survivorship bias , pre-screening or advertising bias, and healthy user bias.

Sampling bias is a threat to external validity – it limits the generalizability of your findings to a broader group of people.

A sampling error is the difference between a population parameter and a sample statistic .

A statistic refers to measures about the sample , while a parameter refers to measures about the population .

Populations are used when a research question requires data from every member of the population. This is usually only feasible when the population is small and easily accessible.

Samples are used to make inferences about populations . Samples are easier to collect data from because they are practical, cost-effective, convenient, and manageable.

There are seven threats to external validity : selection bias , history, experimenter effect, Hawthorne effect , testing effect, aptitude-treatment and situation effect.

The two types of external validity are population validity (whether you can generalize to other groups of people) and ecological validity (whether you can generalize to other situations and settings).

The external validity of a study is the extent to which you can generalize your findings to different groups of people, situations, and measures.

Cross-sectional studies cannot establish a cause-and-effect relationship or analyze behavior over a period of time. To investigate cause and effect, you need to do a longitudinal study or an experimental study .

Cross-sectional studies are less expensive and time-consuming than many other types of study. They can provide useful insights into a population’s characteristics and identify correlations for further research.

Sometimes only cross-sectional data is available for analysis; other times your research question may only require a cross-sectional study to answer it.

Longitudinal studies can last anywhere from weeks to decades, although they tend to be at least a year long.

The 1970 British Cohort Study , which has collected data on the lives of 17,000 Brits since their births in 1970, is one well-known example of a longitudinal study .

Longitudinal studies are better to establish the correct sequence of events, identify changes over time, and provide insight into cause-and-effect relationships, but they also tend to be more expensive and time-consuming than other types of studies.

Longitudinal studies and cross-sectional studies are two different types of research design . In a cross-sectional study you collect data from a population at a specific point in time; in a longitudinal study you repeatedly collect data from the same sample over an extended period of time.

Longitudinal study Cross-sectional study
observations Observations at a in time
Observes the multiple times Observes (a “cross-section”) in the population
Follows in participants over time Provides of society at a given point

There are eight threats to internal validity : history, maturation, instrumentation, testing, selection bias , regression to the mean, social interaction and attrition .

Internal validity is the extent to which you can be confident that a cause-and-effect relationship established in a study cannot be explained by other factors.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
  • If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

Discrete and continuous variables are two types of quantitative variables :

  • Discrete variables represent counts (e.g. the number of objects in a collection).
  • Continuous variables represent measurable amounts (e.g. water volume or weight).

Quantitative variables are any variables where the data represent amounts (e.g. height, weight, or age).

Categorical variables are any variables where the data represent groups. This includes rankings (e.g. finishing places in a race), classifications (e.g. brands of cereal), and binary outcomes (e.g. coin flips).

You need to know what type of variables you are working with to choose the right statistical test for your data and interpret your results .

You can think of independent and dependent variables in terms of cause and effect: an independent variable is the variable you think is the cause , while a dependent variable is the effect .

In an experiment, you manipulate the independent variable and measure the outcome in the dependent variable. For example, in an experiment about the effect of nutrients on crop growth:

  • The  independent variable  is the amount of nutrients added to the crop field.
  • The  dependent variable is the biomass of the crops at harvest time.

Defining your variables, and deciding how you will manipulate and measure them, is an important part of experimental design .

Experimental design means planning a set of procedures to investigate a relationship between variables . To design a controlled experiment, you need:

  • A testable hypothesis
  • At least one independent variable that can be precisely manipulated
  • At least one dependent variable that can be precisely measured

When designing the experiment, you decide:

  • How you will manipulate the variable(s)
  • How you will control for any potential confounding variables
  • How many subjects or samples will be included in the study
  • How subjects will be assigned to treatment levels

Experimental design is essential to the internal and external validity of your experiment.

I nternal validity is the degree of confidence that the causal relationship you are testing is not influenced by other factors or variables .

External validity is the extent to which your results can be generalized to other contexts.

The validity of your experiment depends on your experimental design .

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research, you also have to consider the internal and external validity of your experiment.

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyze data (for example, experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Ask our team

Want to contact us directly? No problem.  We  are always here for you.

Support team - Nina

Our team helps students graduate by offering:

  • A world-class citation generator
  • Plagiarism Checker software powered by Turnitin
  • Innovative Citation Checker software
  • Professional proofreading services
  • Over 300 helpful articles about academic writing, citing sources, plagiarism, and more

Scribbr specializes in editing study-related documents . We proofread:

  • PhD dissertations
  • Research proposals
  • Personal statements
  • Admission essays
  • Motivation letters
  • Reflection papers
  • Journal articles
  • Capstone projects

Scribbr’s Plagiarism Checker is powered by elements of Turnitin’s Similarity Checker , namely the plagiarism detection software and the Internet Archive and Premium Scholarly Publications content databases .

The add-on AI detector is powered by Scribbr’s proprietary software.

The Scribbr Citation Generator is developed using the open-source Citation Style Language (CSL) project and Frank Bennett’s citeproc-js . It’s the same technology used by dozens of other popular citation tools, including Mendeley and Zotero.

You can find all the citation styles and locales used in the Scribbr Citation Generator in our publicly accessible repository on Github .

Scientific Hypothesis, Model, Theory, and Law

Understanding the Difference Between Basic Scientific Terms

Hero Images / Getty Images

  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Scientific Method
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

Words have precise meanings in science. For example, "theory," "law," and "hypothesis" don't all mean the same thing. Outside of science, you might say something is "just a theory," meaning it's a supposition that may or may not be true. In science, however, a theory is an explanation that generally is accepted to be true. Here's a closer look at these important, commonly misused terms.

A hypothesis is an educated guess, based on observation. It's a prediction of cause and effect. Usually, a hypothesis can be supported or refuted through experimentation or more observation. A hypothesis can be disproven but not proven to be true.

Example: If you see no difference in the cleaning ability of various laundry detergents, you might hypothesize that cleaning effectiveness is not affected by which detergent you use. This hypothesis can be disproven if you observe a stain is removed by one detergent and not another. On the other hand, you cannot prove the hypothesis. Even if you never see a difference in the cleanliness of your clothes after trying 1,000 detergents, there might be one more you haven't tried that could be different.

Scientists often construct models to help explain complex concepts. These can be physical models like a model volcano or atom  or conceptual models like predictive weather algorithms. A model doesn't contain all the details of the real deal, but it should include observations known to be valid.

Example: The  Bohr model shows electrons orbiting the atomic nucleus, much the same way as the way planets revolve around the sun. In reality, the movement of electrons is complicated but the model makes it clear that protons and neutrons form a nucleus and electrons tend to move around outside the nucleus.

A scientific theory summarizes a hypothesis or group of hypotheses that have been supported with repeated testing. A theory is valid as long as there is no evidence to dispute it. Therefore, theories can be disproven. Basically, if evidence accumulates to support a hypothesis, then the hypothesis can become accepted as a good explanation of a phenomenon. One definition of a theory is to say that it's an accepted hypothesis.

Example: It is known that on June 30, 1908, in Tunguska, Siberia, there was an explosion equivalent to the detonation of about 15 million tons of TNT. Many hypotheses have been proposed for what caused the explosion. It was theorized that the explosion was caused by a natural extraterrestrial phenomenon , and was not caused by man. Is this theory a fact? No. The event is a recorded fact. Is this theory, generally accepted to be true, based on evidence to-date? Yes. Can this theory be shown to be false and be discarded? Yes.

A scientific law generalizes a body of observations. At the time it's made, no exceptions have been found to a law. Scientific laws explain things but they do not describe them. One way to tell a law and a theory apart is to ask if the description gives you the means to explain "why." The word "law" is used less and less in science, as many laws are only true under limited circumstances.

Example: Consider Newton's Law of Gravity . Newton could use this law to predict the behavior of a dropped object but he couldn't explain why it happened.

As you can see, there is no "proof" or absolute "truth" in science. The closest we get are facts, which are indisputable observations. Note, however, if you define proof as arriving at a logical conclusion, based on the evidence, then there is "proof" in science. Some work under the definition that to prove something implies it can never be wrong, which is different. If you're asked to define the terms hypothesis, theory, and law, keep in mind the definitions of proof and of these words can vary slightly depending on the scientific discipline. What's important is to realize they don't all mean the same thing and cannot be used interchangeably.

  • Scientific Method Lesson Plan
  • What Is an Experiment? Definition and Design
  • How To Design a Science Fair Experiment
  • Chemistry 101 - Introduction & Index of Topics
  • What Is the Difference Between Hard and Soft Science?
  • What Is a Control Group?
  • Henry's Law Definition
  • Chemistry Vocabulary Terms You Should Know
  • Hess's Law Definition
  • What Does pH Stand For?
  • How to Write a Lab Report
  • What Is Chemical Engineering?
  • Teach Yourself Chemistry Today
  • Check Out These Chemistry Career Options Before You Get a Degree
  • Here's How to Calculate pH Values
  • Setting Up a Home Chemistry Lab

Aarhus University logo

AU Studypedia

Aarhus University Seal

Problem statement and hypothesis

A problem statement may need to be re-worked throughout the process .

The academic problem that you are investigating in your assignment can either take the form of a problem statement, i.e. a question that you want to answer, or it can be a hypothesis that you wish to reject or confirm. How you formulate the problem influences the task you are embarking on. Problem statements as well as hypotheses must be relevant to your area of study, and you must be able to carry out the investigation using the resources and methods available to you.  

Note that a problem statement or a hypothesis often changes during the writing process. Sometimes you have to change the focus of the problem statement/hypothesis, and sometimes you only have to change a single word. The amount of changes required depends on your study programme and the assignment at hand. Therefore, you should always ask your teacher or supervisor for advice.  

Problem statement

A problem statement usually consists of one question to be addressed in your assignment and to be answered in your conclusion. It can include 2-5 sub-questions. A problem statement can take different forms, but generally: 

It uses accurate wording, for example technical terms 

It relates specifically to your project, describing what you want to study (object) and how you want to study it (theories and methods)  

It not only introduces a description of the problem (what is the problem?) but also encourages explanation, reflection and discussion of the problem (how and why does the problem exist?) 

The problem statement as a guiding tool

The problem statement can be a useful tool to guide you through your work process. Whether you are collecting empirical data, searching for literature or reading, always keep your problem statement in mind. This will help you narrow down your searches and your reading, and help you focus on what is relevant in order to answer the question in your problem statement. 

You should also be prepared to revise your problem statement as you go along. For example if you discover a more relevant or interesting question when you start working on the investigation. Always discuss with your teacher or supervisor if you want to make radical changes to your problem statement, and thereby to your assignment.  

Working on your problem statement

The problem statement sets the framework for your assignment .

Your problem statement asks the question that will be answered in the conclusion. The actual assignment - between the problem statement and the conclusion - addresses your main question. There must be a clear link between the problem statement and the conclusion. 

A problem statement must comply with certain specific requirements 

Your problem statement has to meet a number of formal requirements, but there are other elements that you need to consider as well. For example: Is your language clear and unambiguous, and is your topic relevant and interesting? 

Checklist for the problem statement

Checklist for the problem statement .

Use the points in the checklist below to assure the quality of your problem statement. Tick off each of the points that your problem statement complies with. Continue to work on your problem statement until it complies with most or all of the items on the list. This will help you make sure that your problem statement is satisfactory. 

difference between statement and hypothesis

The checklist has been prepared by the editorial team in collaboration with Susanne Højlund, associate professor at the School of Culture and Society - Department of Anthropology, Aarhus University. 

A hypothesis is a theoretical, hypothetical explanation that can be tested. It usually takes the form of a causal relationship or a causal explanation. You can also consider the hypothesis as a preliminary response to a research question or a problem statement. A hypothesis can be expressed in different ways, but generally, the following applies: 

The hypothesis is theoretical and builds on existing knowledge and general principles. 

The hypothesis can be tested through a study or an experiment. 

The hypothesis can either be confirmed or rejected. 

Testing a hypothesis

Your hypothesis can include a prediction of the results of your study based on a logical explanation. Your study will then show whether your hypothesis and your prediction appear to be correct or not. In other words, a good hypothesis is a hypothesis that you can test through a study or an experiment. 

A good hypothesis is theoretical and is based on existing knowledge, general principles and previous research within a similar academic problem area. It can also be a good idea to consider proposing several hypotheses. 

In science, it is generally believed that a hypothesis can turn out to be wrong, but that it can never be conclusively proven to be true. Consequently, your study or experiment should be designed so that it attempts to reject or falsify your hypothesis. If you fail to reject the hypothesis, it is more likely to be "correct". 

Inspiration from assignments by other students

Get a list of thesis titles from your field of study, and draw inspiration from other students’ problem statements. 

  • More from M-W
  • To save this word, you'll need to log in. Log In

Definition of hypothesis

Did you know.

The Difference Between Hypothesis and Theory

A hypothesis is an assumption, an idea that is proposed for the sake of argument so that it can be tested to see if it might be true.

In the scientific method, the hypothesis is constructed before any applicable research has been done, apart from a basic background review. You ask a question, read up on what has been studied before, and then form a hypothesis.

A hypothesis is usually tentative; it's an assumption or suggestion made strictly for the objective of being tested.

A theory , in contrast, is a principle that has been formed as an attempt to explain things that have already been substantiated by data. It is used in the names of a number of principles accepted in the scientific community, such as the Big Bang Theory . Because of the rigors of experimentation and control, it is understood to be more likely to be true than a hypothesis is.

In non-scientific use, however, hypothesis and theory are often used interchangeably to mean simply an idea, speculation, or hunch, with theory being the more common choice.

Since this casual use does away with the distinctions upheld by the scientific community, hypothesis and theory are prone to being wrongly interpreted even when they are encountered in scientific contexts—or at least, contexts that allude to scientific study without making the critical distinction that scientists employ when weighing hypotheses and theories.

The most common occurrence is when theory is interpreted—and sometimes even gleefully seized upon—to mean something having less truth value than other scientific principles. (The word law applies to principles so firmly established that they are almost never questioned, such as the law of gravity.)

This mistake is one of projection: since we use theory in general to mean something lightly speculated, then it's implied that scientists must be talking about the same level of uncertainty when they use theory to refer to their well-tested and reasoned principles.

The distinction has come to the forefront particularly on occasions when the content of science curricula in schools has been challenged—notably, when a school board in Georgia put stickers on textbooks stating that evolution was "a theory, not a fact, regarding the origin of living things." As Kenneth R. Miller, a cell biologist at Brown University, has said , a theory "doesn’t mean a hunch or a guess. A theory is a system of explanations that ties together a whole bunch of facts. It not only explains those facts, but predicts what you ought to find from other observations and experiments.”

While theories are never completely infallible, they form the basis of scientific reasoning because, as Miller said "to the best of our ability, we’ve tested them, and they’ve held up."

  • proposition
  • supposition

hypothesis , theory , law mean a formula derived by inference from scientific data that explains a principle operating in nature.

hypothesis implies insufficient evidence to provide more than a tentative explanation.

theory implies a greater range of evidence and greater likelihood of truth.

law implies a statement of order and relation in nature that has been found to be invariable under the same conditions.

Examples of hypothesis in a Sentence

These examples are programmatically compiled from various online sources to illustrate current usage of the word 'hypothesis.' Any opinions expressed in the examples do not represent those of Merriam-Webster or its editors. Send us feedback about these examples.

Word History

Greek, from hypotithenai to put under, suppose, from hypo- + tithenai to put — more at do

1641, in the meaning defined at sense 1a

Phrases Containing hypothesis

  • counter - hypothesis
  • nebular hypothesis
  • null hypothesis
  • planetesimal hypothesis
  • Whorfian hypothesis

Articles Related to hypothesis

hypothesis

This is the Difference Between a...

This is the Difference Between a Hypothesis and a Theory

In scientific reasoning, they're two completely different things

Dictionary Entries Near hypothesis

hypothermia

hypothesize

Cite this Entry

“Hypothesis.” Merriam-Webster.com Dictionary , Merriam-Webster, https://www.merriam-webster.com/dictionary/hypothesis. Accessed 8 Sep. 2024.

Kids Definition

Kids definition of hypothesis, medical definition, medical definition of hypothesis, more from merriam-webster on hypothesis.

Nglish: Translation of hypothesis for Spanish Speakers

Britannica English: Translation of hypothesis for Arabic Speakers

Britannica.com: Encyclopedia article about hypothesis

Subscribe to America's largest dictionary and get thousands more definitions and advanced search—ad free!

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Can you solve 4 words at once?

Word of the day.

See Definitions and Examples »

Get Word of the Day daily email!

Popular in Grammar & Usage

Plural and possessive names: a guide, 31 useful rhetorical devices, more commonly misspelled words, why does english have so many silent letters, your vs. you're: how to use them correctly, popular in wordplay, 8 words for lesser-known musical instruments, it's a scorcher words for the summer heat, 7 shakespearean insults to make life more interesting, birds say the darndest things, 10 words from taylor swift songs (merriam's version), games & quizzes.

Play Blossom: Solve today's spelling word game by finding as many words as you can using just 7 letters. Longer words score more points.

StatAnalytica

Step-by-step guide to hypothesis testing in statistics

hypothesis testing in statistics

Hypothesis testing in statistics helps us use data to make informed decisions. It starts with an assumption or guess about a group or population—something we believe might be true. We then collect sample data to check if there is enough evidence to support or reject that guess. This method is useful in many fields, like science, business, and healthcare, where decisions need to be based on facts.

Learning how to do hypothesis testing in statistics step-by-step can help you better understand data and make smarter choices, even when things are uncertain. This guide will take you through each step, from creating your hypothesis to making sense of the results, so you can see how it works in practical situations.

What is Hypothesis Testing?

Table of Contents

Hypothesis testing is a method for determining whether data supports a certain idea or assumption about a larger group. It starts by making a guess, like an average or a proportion, and then uses a small sample of data to see if that guess seems true or not.

For example, if a company wants to know if its new product is more popular than its old one, it can use hypothesis testing. They start with a statement like “The new product is not more popular than the old one” (this is the null hypothesis) and compare it with “The new product is more popular” (this is the alternative hypothesis). Then, they look at customer feedback to see if there’s enough evidence to reject the first statement and support the second one.

Simply put, hypothesis testing is a way to use data to help make decisions and understand what the data is really telling us, even when we don’t have all the answers.

Importance Of Hypothesis Testing In Decision-Making And Data Analysis

Hypothesis testing is important because it helps us make smart choices and understand data better. Here’s why it’s useful:

  • Reduces Guesswork : It helps us see if our guesses or ideas are likely correct, even when we don’t have all the details.
  • Uses Real Data : Instead of just guessing, it checks if our ideas match up with real data, which makes our decisions more reliable.
  • Avoids Errors : It helps us avoid mistakes by carefully checking if our ideas are right so we don’t make costly errors.
  • Shows What to Do Next : It tells us if our ideas work or not, helping us decide whether to keep, change, or drop something. For example, a company might test a new ad and decide what to do based on the results.
  • Confirms Research Findings : It makes sure that research results are accurate and not just random chance so that we can trust the findings.

Here’s a simple guide to understanding hypothesis testing, with an example:

1. Set Up Your Hypotheses

Explanation: Start by defining two statements:

  • Null Hypothesis (H0): This is the idea that there is no change or effect. It’s what you assume is true.
  • Alternative Hypothesis (H1): This is what you want to test. It suggests there is a change or effect.

Example: Suppose a company says their new batteries last an average of 500 hours. To check this:

  • Null Hypothesis (H0): The average battery life is 500 hours.
  • Alternative Hypothesis (H1): The average battery life is not 500 hours.

2. Choose the Test

Explanation: Pick a statistical test that fits your data and your hypotheses. Different tests are used for various kinds of data.

Example: Since you’re comparing the average battery life, you use a one-sample t-test .

3. Set the Significance Level

Explanation: Decide how much risk you’re willing to take if you make a wrong decision. This is called the significance level, often set at 0.05 or 5%.

Example: You choose a significance level of 0.05, meaning you’re okay with a 5% chance of being wrong.

4. Gather and Analyze Data

Explanation: Collect your data and perform the test. Calculate the test statistic to see how far your sample result is from what you assumed.

Example: You test 30 batteries and find they last an average of 485 hours. You then calculate how this average compares to the claimed 500 hours using the t-test.

5. Find the p-Value

Explanation: The p-value tells you the probability of getting a result as extreme as yours if the null hypothesis is true.

Example: You find a p-value of 0.0001. This means there’s a very small chance (0.01%) of getting an average battery life of 485 hours or less if the true average is 500 hours.

6. Make Your Decision

Explanation: Compare the p-value to your significance level. If the p-value is smaller, you reject the null hypothesis. If it’s larger, you do not reject it.

Example: Since 0.0001 is much less than 0.05, you reject the null hypothesis. This means the data suggests the average battery life is different from 500 hours.

7. Report Your Findings

Explanation: Summarize what the results mean. State whether you rejected the null hypothesis and what that implies.

Example: You conclude that the average battery life is likely different from 500 hours. This suggests the company’s claim might not be accurate.

Hypothesis testing is a way to use data to check if your guesses or assumptions are likely true. By following these steps—setting up your hypotheses, choosing the right test, deciding on a significance level, analyzing your data, finding the p-value, making a decision, and reporting results—you can determine if your data supports or challenges your initial idea.

Understanding Hypothesis Testing: A Simple Explanation

Hypothesis testing is a way to use data to make decisions. Here’s a straightforward guide:

1. What is the Null and Alternative Hypotheses?

  • Null Hypothesis (H0): This is your starting assumption. It says that nothing has changed or that there is no effect. It’s what you assume to be true until your data shows otherwise. Example: If a company says their batteries last 500 hours, the null hypothesis is: “The average battery life is 500 hours.” This means you think the claim is correct unless you find evidence to prove otherwise.
  • Alternative Hypothesis (H1): This is what you want to find out. It suggests that there is an effect or a difference. It’s what you are testing to see if it might be true. Example: To test the company’s claim, you might say: “The average battery life is not 500 hours.” This means you think the average battery life might be different from what the company says.

2. One-Tailed vs. Two-Tailed Tests

  • One-Tailed Test: This test checks for an effect in only one direction. You use it when you’re only interested in finding out if something is either more or less than a specific value. Example: If you think the battery lasts longer than 500 hours, you would use a one-tailed test to see if the battery life is significantly more than 500 hours.
  • Two-Tailed Test: This test checks for an effect in both directions. Use this when you want to see if something is different from a specific value, whether it’s more or less. Example: If you want to see if the battery life is different from 500 hours, whether it’s more or less, you would use a two-tailed test. This checks for any significant difference, regardless of the direction.

3. Common Misunderstandings

  • Clarification: Hypothesis testing doesn’t prove that the null hypothesis is true. It just helps you decide if you should reject it. If there isn’t enough evidence against it, you don’t reject it, but that doesn’t mean it’s definitely true.
  • Clarification: A small p-value shows that your data is unlikely if the null hypothesis is true. It suggests that the alternative hypothesis might be right, but it doesn’t prove the null hypothesis is false.
  • Clarification: The significance level (alpha) is a set threshold, like 0.05, that helps you decide how much risk you’re willing to take for making a wrong decision. It should be chosen carefully, not randomly.
  • Clarification: Hypothesis testing helps you make decisions based on data, but it doesn’t guarantee your results are correct. The quality of your data and the right choice of test affect how reliable your results are.

Benefits and Limitations of Hypothesis Testing

  • Clear Decisions: Hypothesis testing helps you make clear decisions based on data. It shows whether the evidence supports or goes against your initial idea.
  • Objective Analysis: It relies on data rather than personal opinions, so your decisions are based on facts rather than feelings.
  • Concrete Numbers: You get specific numbers, like p-values, to understand how strong the evidence is against your idea.
  • Control Risk: You can set a risk level (alpha level) to manage the chance of making an error, which helps avoid incorrect conclusions.
  • Widely Used: It can be used in many areas, from science and business to social studies and engineering, making it a versatile tool.

Limitations

  • Sample Size Matters: The results can be affected by the size of the sample. Small samples might give unreliable results, while large samples might find differences that aren’t meaningful in real life.
  • Risk of Misinterpretation: A small p-value means the results are unlikely if the null hypothesis is true, but it doesn’t show how important the effect is.
  • Needs Assumptions: Hypothesis testing requires certain conditions, like data being normally distributed . If these aren’t met, the results might not be accurate.
  • Simple Decisions: It often results in a basic yes or no decision without giving detailed information about the size or impact of the effect.
  • Can Be Misused: Sometimes, people misuse hypothesis testing, tweaking data to get a desired result or focusing only on whether the result is statistically significant.
  • No Absolute Proof: Hypothesis testing doesn’t prove that your hypothesis is true. It only helps you decide if there’s enough evidence to reject the null hypothesis, so the conclusions are based on likelihood, not certainty.

Final Thoughts 

Hypothesis testing helps you make decisions based on data. It involves setting up your initial idea, picking a significance level, doing the test, and looking at the results. By following these steps, you can make sure your conclusions are based on solid information, not just guesses.

This approach lets you see if the evidence supports or contradicts your initial idea, helping you make better decisions. But remember that hypothesis testing isn’t perfect. Things like sample size and assumptions can affect the results, so it’s important to be aware of these limitations.

In simple terms, using a step-by-step guide for hypothesis testing is a great way to better understand your data. Follow the steps carefully and keep in mind the method’s limits.

What is the difference between one-tailed and two-tailed tests?

 A one-tailed test assesses the probability of the observed data in one direction (either greater than or less than a certain value). In contrast, a two-tailed test looks at both directions (greater than and less than) to detect any significant deviation from the null hypothesis.

How do you choose the appropriate test for hypothesis testing?

The choice of test depends on the type of data you have and the hypotheses you are testing. Common tests include t-tests, chi-square tests, and ANOVA. You get more details about ANOVA, you may read Complete Details on What is ANOVA in Statistics ?  It’s important to match the test to the data characteristics and the research question.

What is the role of sample size in hypothesis testing?  

Sample size affects the reliability of hypothesis testing. Larger samples provide more reliable estimates and can detect smaller effects, while smaller samples may lead to less accurate results and reduced power.

Can hypothesis testing prove that a hypothesis is true?  

Hypothesis testing cannot prove that a hypothesis is true. It can only provide evidence to support or reject the null hypothesis. A result can indicate whether the data is consistent with the null hypothesis or not, but it does not prove the alternative hypothesis with certainty.

Related Posts

how-to-find-the=best-online-statistics-homework-help

How to Find the Best Online Statistics Homework Help

why-spss-homework-help-is-an-important-aspects-for-students

Why SPSS Homework Help Is An Important aspect for Students?

Leave a comment cancel reply.

Your email address will not be published. Required fields are marked *

  • Neuroscience

Reevaluating the Neural Noise Hypothesis in Dyslexia: Insights from EEG and 7T MRS Biomarkers

Agnieszka glica, katarzyna wasilewska, julia jurkowska, jarosław żygierewicz, bartosz kossowski.

  • Katarzyna Jednoróg author has email address
  • Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3 Street, 02-093 Warsaw, Poland
  • Faculty of Physics, University of Warsaw, Pasteur 5 Street, 02-093 Warsaw, Poland
  • Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3 Street, 02-093 Warsaw, Poland
  • https://doi.org/ 10.7554/eLife.99920.1
  • Open access
  • Copyright information

The neural noise hypothesis of dyslexia posits an imbalance between excitatory and inhibitory (E/I) brain activity as an underlying mechanism of reading difficulties. This study provides the first direct test of this hypothesis using both indirect EEG power spectrum measures in 120 Polish adolescents and young adults (60 with dyslexia, 60 controls) and direct glutamate (Glu) and gamma-aminobutyric acid (GABA) concentrations from magnetic resonance spectroscopy (MRS) at 7T MRI scanner in half of the sample. Our results, supported by Bayesian statistics, show no evidence of E/I balance differences between groups, challenging the hypothesis that cortical hyperexcitability underlies dyslexia. These findings suggest alternative mechanisms must be explored and highlight the need for further research into the E/I balance and its role in neurodevelopmental disorders.

eLife assessment

The authors combined neurophysiological (electroencephalography [EEG]) and neurochemical (magnetic resonance spectroscopy [MRS]) measures to empirically evaluate the neural noise hypothesis of developmental dyslexia. Their results are solid , supported by consistent findings from the two complementary methodologies and Bayesian statistics. Additional analyses, particularly on the neurochemical measures, are necessary to further substantiate the results. This study is useful for understanding the neural mechanisms of dyslexia and neural development in general.

  • https://doi.org/ 10.7554/eLife.99920.1.sa3
  • Read the peer reviews
  • About eLife assessments

Introduction

According to the neural noise hypothesis of dyslexia, reading difficulties stem from an imbalance between excitatory and inhibitory (E/I) neural activity ( Hancock et al., 2017 ). The hypothesis predicts increased cortical excitation leading to more variable and less synchronous neural firing. This instability supposedly results in disrupted sensory representations and impedes phonological awareness and multisensory integration skills, crucial for learning to read ( Hancock et al., 2017 ). Yet, studies testing this hypothesis are lacking.

The non-invasive measurement of the E/I balance can be derived through assessment of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitters concentration via magnetic resonance spectroscopy (MRS) ( Finkelman et al., 2022 ) or through global, indirect estimations from the electroencephalography (EEG) signal ( Ahmad et al., 2022 ).

Direct measurements of Glu and GABA yielded conflicting findings. Higher Glu concentrations in the midline occipital cortex correlated with poorer reading performance in children ( Del Tufo et al., 2018 ; Pugh et al., 2014 ), while elevated Glu levels in the anterior cingulate cortex (ACC) corresponded to greater phonological skills ( Lebel et al., 2016 ). Elevated GABA in the left inferior frontal gyrus was linked to reduced verbal fluency in adults ( Nakai and Okanoya, 2016 ), and increased GABA in the midline occipital cortex in children was associated with slower reaction times in a linguistic task ( Del Tufo et al., 2018 ). However, notable null findings exist regarding dyslexia status and Glu levels in the ACC among children ( Horowitz-Kraus et al., 2018 ) as well as Glu and GABA levels in the visual and temporo-parietal cortices in both children and adults ( Kossowski et al., 2019 ).

Both beta (∼13-28 Hz) and gamma (> 30 Hz) oscillations may serve as E/I balance indicators ( Ahmad et al., 2022 ), as greater GABA-ergic activity has been associated with greater beta power ( Jensen et al., 2005 ; Porjesz et al., 2002 ) and gamma power or peak frequency ( Brunel and Wang, 2003 ; Chen et al., 2017 ). Resting-state analyses often reported nonsignificant beta power associations with dyslexia ( Babiloni et al., 2012 ; Fraga González et al., 2018 ; Xue et al., 2020 ), however, one study indicated lower beta power in dyslexic compared to control boys ( Fein et al., 1986 ). Mixed results were also observed during tasks. One study found decreased beta power in the dyslexic group ( Spironelli et al., 2008 ), while the other increased beta power relative to the control group ( Rippon and Brunswick, 2000 ). Insignificant relationship between resting gamma power and dyslexia was reported ( Babiloni et al., 2012 ; Lasnick et al., 2023 ). When analyzing auditory steady-state responses, the dyslexic group had a lower gamma peak frequency, while no significant differences in gamma power were observed ( Rufener and Zaehle, 2021 ). Essentially, the majority of studies in dyslexia examining gamma frequencies evaluated cortical entrainment to auditory stimuli ( Lehongre et al., 2011 ; Marchesotti et al., 2020 ; Van Hirtum et al., 2019 ). Therefore, the results from these tasks do not provide direct evidence of differences in either gamma power or peak frequency between the dyslexic and control groups.

The EEG signal comprises both oscillatory, periodic activity, and aperiodic activity, characterized by a gradual decrease in power as frequencies rise (1/f signal) ( Donoghue et al., 2020 ). Recently recognized as a biomarker of E/I balance, a lower exponent of signal decay (flatter slope) indicates a greater dominance of excitation over inhibition in the brain, as shown by the simulation models of local field potentials, ratio of AMPA/GABA a synapses in the rat hippocampus ( Gao et al., 2017 ) and recordings under propofol or ketamine in macaques and humans ( Gao et al., 2017 ; Waschke et al., 2021 ). However, there are also pharmacological studies providing mixed results ( Colombo et al., 2019 ; Salvatore et al., 2024 ). Nonetheless, the 1/f signal has shown associations with various conditions putatively characterized by changes in E/I balance, such as early development in infancy ( Schaworonkow and Voytek, 2021 ), healthy aging ( Voytek et al., 2015 ) and neurodevelopmental disorders like ADHD ( Ostlund et al., 2021 ), autism spectrum disorder ( Manyukhina et al., 2022 ) or schizophrenia ( Molina et al., 2020 ). Despite its potential relevance, the evaluation of the 1/f signal in dyslexia remains limited to one study, revealing flatter slopes among dyslexic compared to control participants at rest ( Turri et al., 2023 ), thereby lending support to the notion of neural noise in dyslexia.

Here, we examined both indirect (1/f signal, beta, and gamma oscillations during both rest and a spoken language task) and direct (Glu and GABA) biomarkers of E/I balance in participants with dyslexia and age-matched controls. The neural noise hypothesis predicts flatter slopes of 1/f signal, decreased beta and gamma power, and higher Glu concentrations in the dyslexic group. Furthermore, we tested the relationships between different E/I measures. Flatter slopes of 1/f signal should be related to higher Glu level, while enhanced beta and gamma power to increased GABA level.

No evidence for group differences in the EEG E/I biomarkers

We recruited 120 Polish adolescents and young adults – 60 with dyslexia diagnosis and 60 controls matched in sex, age, and family socio-economic status. The dyslexic group scored lower in all reading and reading-related tasks and higher in the Polish version of the Adult Reading History Questionnaire (ARHQ-PL) ( Bogdanowicz et al., 2015 ),where a higher score indicates a higher risk of dyslexia (see Table S1 in the Supplementary Material). Although all participants were within the intellectual norm, the dyslexic group scored lower on the IQ scale (including nonverbal subscale only) than the control group. However, the Bayesian statistics did not provide evidence for the difference between groups in the nonverbal IQ.

We analyzed the aperiodic (exponent and offset) components of the EEG signal at rest and during a spoken language task, where participants listened to a sentence and had to indicate its veracity. Due to a technical error, the signal from one person (a female from the dyslexic group) was not recorded during most of the language task and was excluded from the analyses. Hence, the results are provided for 119 participants – 59 in the dyslexic and 60 in the control group.

First, aperiodic parameter values were averaged across all electrodes and compared between groups (dyslexic, control) and conditions (resting state, language task) using a 2×2 repeated measures ANOVA. Age negatively correlated both with the exponent ( r = -.27, p = .003, BF 10 = 7.96) and offset ( r = -.40, p < .001, BF 10 = 3174.29) in line with previous investigations ( Cellier et al., 2021 ; McSweeney et al., 2021 ; Schaworonkow and Voytek, 2021 ; Voytek et al., 2015 ), therefore we included age as a covariate. Post-hoc tests are reported with Bonferroni corrected p -values.

For the mean exponent, we found a significant effect of age ( F (1,116) = 8.90, p = .003, η 2 p = .071, BF incl = 10.47), while the effects of condition ( F (1,116) = 2.32, p = .131, η 2 p = .020, BF incl = 0.39) and group ( F (1,116) = 0.08, p = .779, η 2 p = .001, BF incl = 0.40) were not significant and Bayes Factor did not provide evidence for either inclusion or exclusion. Interaction between group and condition ( F (1,116) = 0.16, p = .689, η 2 p = .001, BF incl = 0.21) was not significant and Bayes Factor indicated against including it in the model.

For the mean offset, we found significant effects of age ( F (1,116) = 22.57, p < .001, η 2 p = .163, BF incl = 1762.19) and condition ( F (1,116) = 23.04, p < .001, η 2 p = .166, BF incl > 10000) with post-hoc comparison indicating that the offset was lower in the resting state condition ( M = -10.80, SD = 0.21) than in the language task ( M = -10.67, SD = 0.26, p corr < .001). The effect of group ( F (1,116) = 0.00, p = .964, η 2 p = .000, BF incl = 0.54) was not significant while Bayes Factor did not provide evidence for either inclusion or exclusion. Interaction between group and condition was not significant ( F (1,116) = 0.07, p = .795, η 2 p = .001, BF incl = 0.22) and Bayes Factor indicated against including it in the model.

Next, we restricted analyses to language regions and averaged exponent and offset values from the frontal electrodes corresponding to the left (F7, FT7, FC5) and right inferior frontal gyrus (F8, FT8, FC6), as well as temporal electrodes, corresponding to the left (T7, TP7, TP9) and right superior temporal sulcus, STS (T8, TP8, TP10)( Giacometti et al., 2014 )( Scrivener and Reader, 2022 ). A 2×2×2×2 (group, condition, hemisphere, region) repeated measures ANOVA with age as a covariate was applied. Power spectra from the left STS at rest and during the language task are presented in Figure 1A and C , while the results for the exponent, offset, and beta power are presented in Figure 1B and D .

difference between statement and hypothesis

Overview of the main results obtained in the study. (A) Power spectral densities averaged across 3 electrodes (T7, TP7, TP9) corresponding to the left superior temporal sulcus (STS) separately for dyslexic (DYS) and control (CON) groups at rest and (C) during the language task. (B) Plots illustrating results for the exponent, offset, and the beta power from the left STS electrodes at rest and (D ) during the language task. (E) Group results (CON > DYS) from the fMRI localizer task for words compared to the control stimuli (p < .05 FWE cluster threshold) and overlap of the MRS voxel placement across participants. (F) MRS spectra separately for DYS and CON groups. (G) Plots illustrating results for the Glu, GABA, Glu/GABA ratio and the Glu/GABA imbalance. (H ) Semi-partial correlation between offset at rest (left STS electrodes) and Glu controlling for age and gray matter volume (GMV).

For the exponent, there were significant effects of age ( F (1,116) = 14.00, p < .001, η 2 p = .108, BF incl = 11.46) and condition F (1,116) = 4.06, p = .046, η 2 p = .034, BF incl = 1.88), however, Bayesian statistics did not provide evidence for either including or excluding the condition factor. Furthermore, post-hoc comparisons did not reveal significant differences between the exponent at rest ( M = 1.51, SD = 0.17) and during the language task ( M = 1.51, SD = 0.18, p corr = .546). There was also a significant interaction between region and group, although Bayes Factor indicated against including it in the model ( F (1,116) = 4.44, p = .037, η 2 p = .037, BF incl = 0.25). Post-hoc comparisons indicated that the exponent was higher in the frontal than in the temporal region both in the dyslexic ( M frontal = 1.54, SD frontal = 0.15, M temporal = 1.49, SD temporal = 0.18, p corr < .001) and in the control group ( M frontal = 1.54, SD frontal = 0.17, M temporal = 1.46, SD temporal = 0.20, p corr < .001). The difference between groups was not significant either in the frontal ( p corr = .858) or temporal region ( p corr = .441). The effects of region ( F (1,116) = 1.17, p = .282, η 2 p = .010, BF incl > 10000) and hemisphere ( F (1,116) = 1.17, p = .282, η 2 p = .010, BF incl = 12.48) were not significant, although Bayesian statistics indicated in favor of including them in the model. Furthermore, the interactions between condition and group ( F (1,116) = 0.18, p = .673, η 2 p = .002, BF incl = 3.70), and between region, hemisphere, and condition ( F (1,116) = 0.11, p = .747, η 2 p = .001, BF incl = 7.83) were not significant, however Bayesian statistics indicated in favor of including these interactions in the model. The effect of group ( F (1,116) = 0.12, p = .733, η 2 p = .001, BF incl = 1.19) was not significant, while Bayesian statistics did not provide evidence for either inclusion or exclusion. Any other interactions were not significant and Bayes Factor indicated against including them in the model.

In the case of offset, there were significant effects of condition ( F (1,116) = 20.88, p < .001, η 2 p = .153, BF incl > 10000) and region ( F (1,116) = 6.18, p = .014, η 2 p = .051, BF incl > 10000). For the main effect of condition, post-hoc comparison indicated that the offset was lower in the resting state condition ( M = -10.88, SD = 0.33) than in the language task ( M = -10.76, SD = 0.38, p corr < .001), while for the main effect of region, post-hoc comparison indicated that the offset was lower in the temporal ( M = -10.94, SD = 0.37) as compared to the frontal region ( M = -10.69, SD = 0.34, p corr < .001). There was also a significant effect of age ( F (1,116) = 20.84, p < .001, η 2 p = .152, BF incl = 0.23) and interaction between condition and hemisphere, ( F (1,116) = 4.35, p = .039, η 2 p = .036, BF incl = 0.21), although Bayes Factor indicated against including these factors in the model. Post-hoc comparisons for the condition*hemisphere interaction indicated that the offset was lower in the resting state condition than in the language task both in the left ( M rest = -10.85, SD rest = 0.34, M task = -10.73, SD task = 0.40, p corr < .001) and in the right hemisphere ( M rest = -10.91, SD rest = 0.31, M task = -10.79, SD task = 0.37, p corr < .001) and that the offset was lower in the right as compared to the left hemisphere both at rest ( p corr < .001) and during the language task ( p corr < .001). The interactions between region and condition ( F (1,116) = 1.76, p = .187, η 2 p = .015, BF incl > 10000), hemisphere and group ( F (1,116) = 1.58, p = .211, η 2 p = .013, BF incl = 1595.18), region and group ( F (1,116) = 0.27, p = .605, η 2 p = .002, BF incl = 9.32), as well as between region, condition, and group ( F (1,116) = 0.21, p = .651, η 2 p = .002, BF incl = 2867.18) were not significant, although Bayesian statistics indicated in favor of including them in the model. The effect of group ( F (1,116) = 0.18, p = .673, η 2 p = .002, BF incl < 0.00001) was not significant and Bayesian statistics indicated against including it in the model. Any other interactions were not significant and Bayesian statistics indicated against including them in the model or did not provide evidence for either inclusion or exclusion.

Then, we analyzed the aperiodic-adjusted brain oscillations. Since the algorithm did not find the gamma peak (30-43 Hz) above the aperiodic component in the majority of participants, we report the results only for the beta (14-30 Hz) power. We performed a similar regional analysis as for the exponent and offset with a 2×2×2×2 (group, condition, hemisphere, region) repeated measures ANOVA. However, we did not include age as a covariate, as it did not correlate with any of the periodic measures. The sample size was 117 (DYS n = 57, CON n = 60) since in 2 participants the algorithm did not find the beta peak above the aperiodic component in the left frontal electrodes during the task.

The analysis revealed a significant effect of condition ( F (1,115) = 8.58, p = .004, η 2 p = .069, BF incl = 5.82) with post-hoc comparison indicating that the beta power was greater during the language task ( M = 0.53, SD = 0.22) than at rest ( M = 0.50, SD = 0.19, p corr = .004). There were also significant effects of region ( F (1,115) = 10.98, p = .001, η 2 p = .087, BF incl = 23.71), and hemisphere ( F (1,115) = 12.08, p < .001, η 2 p = .095, BF incl = 23.91). For the main effect of region, post-hoc comparisons indicated that the beta power was greater in the temporal ( M = 0.52, SD = 0.21) as compared to the frontal region ( M = 0.50, SD = 0.19, p corr = .001), while for the main effect of hemisphere, post-hoc comparisons indicated that the beta power was greater in the right ( M = 0.52, SD = 0.20) than in the left hemisphere ( M = 0.51, SD = 0.20, p corr < .001). There was a significant interaction between condition and region ( F (1,115) = 12.68, p < .001, η 2 p = .099, BF incl = 55.26) with greater beta power during the language task as compared to rest significant in the temporal ( M rest = 0.50, SD rest = 0.20, M task = 0.55, SD task = 0.24, p corr < .001), while not in the frontal region ( M rest = 0.49, SD rest = 0.18, M task = 0.51, SD task = 0.22, p corr = .077). Also, greater beta power in the temporal as compared to the frontal region was significant during the language task ( p corr < .001), while not at rest ( p corr = .283). The effect of group ( F (1,115) = 0.05, p = .817, η 2 p = .000, BF incl < 0.00001) was not significant and Bayes Factor indicated against including it in the model. Any other interactions were not significant and Bayesian statistics indicated against including them in the model or did not provide evidence for either inclusion or exclusion.

Additionally, building upon previous findings which demonstrated differences in dyslexia in aperiodic and periodic components within the parieto-occipital region ( Turri et al., 2023 ), we have included analyses for the same cluster of electrodes in the Supplementary Material. However, in this region, we also did not find evidence for group differences either in the exponent, offset or beta power.

No evidence for group differences in Glu and GABA concentrations in the left STS

In total, 59 out of 120 participants underwent MRS session at 7T MRI scanner - 29 from the dyslexic group (13 females, 16 males) and 30 from the control group (14 females, 16 males). The MRS voxel was placed in the left STS, in a region showing highest activation for both visual and auditory words (compared to control stimuli) localized individually in each participant, based on an fMRI task (see Figure 1E for overlap of the MRS voxel placement across participants and Figure 1F for MRS spectra). We decided to analyze the neurometabolites’ levels derived from the left STS, as this region is consistently related to functional and structural differences in dyslexia across languages ( Yan et al., 2021 ).

Due to insufficient magnetic homogeneity or interruption of the study by the participants, 5 participants from the dyslexic group had to be excluded. We excluded further 4 participants due to poor quality of the obtained spectra thus the results for Glu are reported for 50 participants - 21 in the dyslexic (12 females, 9 males) and 29 in the control group (13 females, 16 males). In the case of GABA, we additionally excluded 3 participants based on the Cramér-Rao Lower Bounds (CRLB) > 20%. Therefore, the results for GABA, Glu/GABA ratio and Glu/GABA imbalance are reported for 47 participants - 20 in the dyslexic (12 females, 8 males) and 27 in the control group (11 females, 16 males). Demographic and behavioral characteristics for the subsample of 47 participants are provided in the Table S2.

For each metabolite, we performed a separate univariate ANCOVA with the effect of group being tested and voxel’s gray matter volume (GMV) as a covariate (see Figure 1G ). For the Glu analysis, we also included age as a covariate, due to negative correlation between variables ( r = -.35, p = .014, BF 10 = 3.41). The analysis revealed significant effect of GMV ( F (1,46) = 8.18, p = .006, η 2 p = .151, BF incl = 12.54), while the effects of age ( F (1,46) = 3.01, p = .090, η 2 p = .061, BF incl = 1.15) and group ( F (1,46) = 1.94, p = .170, 1 = .040, BF incl = 0.63) were not significant and Bayes Factor did not provide evidence for either inclusion or exclusion.

Conversely, GABA did not correlate with age ( r = -.11, p = .481, BF 10 = 0.23), thus age was not included as a covariate. The analysis revealed a significant effect of GMV ( F (1,44) = 4.39, p = .042, η 2 p = .091, BF incl = 1.64), however Bayes Factor did not provide evidence for either inclusion or exclusion. The effect of group was not significant ( F (1,44) = 0.49, p = .490, η 2 p = .011, BF incl = 0.35) although Bayesian statistics did not provide evidence for either inclusion or exclusion.

Also, Glu/GABA ratio did not correlate with age ( r = -.05, p = .744, BF 10 = 0.19), therefore age was not included as a covariate. The results indicated that the effect of GMV was not significant ( F (1,44) = 0.95, p = .335, η 2 p = .021, BF incl = 0.43) while Bayes Factor did not provide evidence for either inclusion or exclusion. The effect of group was not significant ( F (1,44) = 0.01, p = .933, η 2 p = .000, BF incl = 0.29) and Bayes Factor indicated against including it in the model.

Following a recent study examining developmental changes in both EEG and MRS E/I biomarkers ( McKeon et al., 2024 ), we calculated an additional measure of Glu/GABA imbalance, computed as the absolute residual value from the linear regression of Glu predicted by GABA with greater values indicating greater Glu/GABA imbalance. Alike the previous work ( McKeon et al., 2024 ), we took the square root of this value to ensure a normal distribution of the data. This measure did not correlate with age ( r = -.05, p = .719, BF 10 = 0.19); thus, age was not included as a covariate. The results indicated that the effect of GMV was not significant ( F (1,44) = 0.63, p = .430, η 2 p = .014, BF incl = 0.37) while Bayes Factor did not provide evidence for either inclusion or exclusion. The effect of group was not significant ( F (1,44) = 0.74, p = .396, η 2 p = .016, BF incl = 0.39) although Bayesian statistics did not provide evidence for either inclusion or exclusion.

Correspondence between Glu and GABA concentrations and EEG E/I biomarkers is limited

Next, we investigated correlations between Glu and GABA concentrations in the left STS and EEG markers of E/I balance. Semi-partial correlations were performed ( Table 1 ) to control for confounding variables - for Glu the effects of age and GMV were regressed, for GABA, Glu/GABA ratio and Glu/GABA imbalance the effect of GMV was regressed, while for exponents and offsets the effect of age was regressed. For zero-order correlations between variables see Table S3.

difference between statement and hypothesis

Semi-partial Correlations Between Direct and Indirect Markers of Excitatory-Inhibitory Balance. For Glu the Effects of Age and Gray Matter Volume (GMV) Were Regressed, for GABA, Glu/GABA Ratio and Glu/GABA Imbalance the Effect of GMV was Regressed, While for Exponents and Offsets the Effect of Age was Regressed

Glu negatively correlated with offset in the left STS both at rest ( r = -.38, p = .007, BF 10 = 6.28; Figure 1H ) and during the language task ( r = -.37, p = .009, BF 10 = 5.05), while any other correlations between Glu and EEG markers were not significant and Bayesian statistics indicated in favor of null hypothesis or provided absence of evidence for either hypothesis. Furthermore, Glu/GABA imbalance positively correlated with exponent at rest both averaged across all electrodes ( r = .29, p = .048, BF 10 = 1.21), as well as in the left STS electrodes ( r = .35, p = .017, BF 10 = 2.87) although Bayes Factor provided absence of evidence for either alternative or null hypothesis. Conversely, GABA and Glu/GABA ratio were not significantly correlated with any of the EEG markers and Bayesian statistics indicated in favor of null hypothesis or provided absence of evidence for either hypothesis.

Testing the paths from neural noise to reading

The neural noise hypothesis of dyslexia predicts impact of the neural noise on reading through the impairment of 1) phonological awareness, 2) lexical access and generalization and 3) multisensory integration ( Hancock et al., 2017 ). Therefore, we analyzed correlations between these variables, reading skills and direct and indirect markers of E/I balance. For the composite score of phonological awareness, we averaged z-scores from phoneme deletion, phoneme and syllable spoonerisms tasks. For the composite score of lexical access and generalization we averaged z-scores from objects, colors, letters and digits subtests from rapid automatized naming (RAN) task, while for the composite score of reading we averaged z-scores from words and pseudowords read per minute, and text reading time in reading comprehension task. The outcomes from the RAN and reading comprehension task have been transformed from raw time scores to items/time scores in order to provide the same direction of relationships for all z-scored measures, with greater values indicating better skills. For the multisensory integration score we used results from the redundant target effect task reported in our previous work ( Glica et al., 2024 ), with greater values indicating a greater magnitude of multisensory integration.

Age positively correlated with multisensory integration ( r = .38, p < .001, BF 10 = 87.98), composite scores of reading ( r = .22, p = .014, BF 10 = 2.24) and phonological awareness ( r = .21, p = .021, BF 10 = 1.59), while not with the composite score of RAN ( r = .13, p = .151, BF 10 = 0.32). Hence, we regressed the effect of age from multisensory integration, reading and phonological awareness scores and performed semi-partial correlations ( Table 2 , for zero-order correlations see Table S4).

difference between statement and hypothesis

Semi-partial Correlations Between Reading, Phonological Awareness, Rapid Automatized Naming, Multisensory Integration and Markers of Excitatory-Inhibitory Balance. For Reading, Phonological Awareness and Multisensory Integration the Effect of Age was Regressed, for Glu the Effects of Age and Gray Matter Volume (GMV) Were Regressed, for GABA, Glu/GABA Ratio and Glu/GABA Imbalance the Effect of GMV was Regressed, While for Exponents and Offsets the Effect of Age was Regressed

Phonological awareness positively correlated with offset in the left STS at rest ( r = .18, p = .049, BF 10 = 0.77) and with beta power in the left STS both at rest ( r = .23, p = .011, BF 10 = 2.73; Figure 2A ) and during the language task ( r = .23, p = .011, BF 10 = 2.84; Figure 2B ), although Bayes Factor provided absence of evidence for either alternative or null hypothesis. Furthermore, multisensory integration positively correlated with GABA concentration ( r = .31, p = .034, BF 10 = 1.62) and negatively with Glu/GABA ratio ( r = -.32, p = .029, BF 10 = 1.84), although Bayes Factor provided absence of evidence for either alternative or null hypothesis. Any other correlations between reading skills and E/I balance markers were not significant and Bayesian statistics indicated in favor of null hypothesis or provided absence of evidence for either hypothesis.

difference between statement and hypothesis

Associations between beta power, phonological awareness and reading. (A) Semi-partial correlation between phonological awareness controlling for age and beta power (in the left STS electrodes) at rest and (B) during the language task. (C) Partial correlation between phonological awareness and reading controlling for age. (D) Mediation analysis results. Unstandardized b regression coefficients are presented. Age was included in the analysis as a covariate. 95% CI - 95% confidence intervals. left STS - values averaged across 3 electrodes corresponding to the left superior temporal sulcus (T7, TP7, TP9).

Given that beta power correlated with phonological awareness, and considering the prediction that neural noise impedes reading by affecting phonological awareness — we examined this relationship through a mediation model. Since phonological awareness correlated with beta power in the left STS both at rest and during language task, the outcomes from these two conditions were averaged prior to the mediation analysis. Macro PROCESS v4.2 ( Hayes, 2017 ) on IBM SPSS Statistics v29 with model 4 (simple mediation) with 5000 Bootstrap samples to assess the significance of indirect effect was employed. Since age correlated both with phonological awareness and reading, we also included age as a covariate.

The results indicated that both effects of beta power in the left STS ( b = .96, t (116) = 2.71, p = .008, BF incl = 7.53) and age ( b = .06, t (116) = 2.55, p = .012, BF incl = 5.98) on phonological awareness were significant. The effect of phonological awareness on reading was also significant ( b = .69, t (115) = 8.16, p < .001, BF incl > 10000), while the effects of beta power ( b = -.42, t (115) = -1.25, p = .213, BF incl = 0.52) and age ( b = .03, t (115) = 1.18, p = .241, BF incl = 0.49) on reading were not significant when controlling for phonological awareness. Finally, the indirect effect of beta power on reading through phonological awareness was significant ( b = .66, SE = .24, 95% CI = [.24, 1.18]), while the total effect of beta power was not significant ( b = .24, t (116) = 0.61, p = .546, BF incl = 0.41). The results from the mediation analysis are presented in Figure 2D .

Although similar mediation analysis could have been conducted for the Glu/GABA ratio, multisensory integration, and reading based on the correlations between these variables, we did not test this model due to the small sample size (47 participants), which resulted in insufficient statistical power.

The current study aimed to validate the neural noise hypothesis of dyslexia ( Hancock et al., 2017 ) utilizing E/I balance biomarkers from EEG power spectra and ultra-high-field MRS. Contrary to its predictions, we did not observe differences either in 1/f slope, beta power, or Glu and GABA concentrations in participants with dyslexia. Relations between E/I balance biomarkers were limited to significant correlations between Glu and the offset when controlling for age, and between Glu/GABA imbalance and the exponent.

In terms of indirect markers, our study found no evidence of group differences in the aperiodic components of the EEG signal. In most of the models, we did not find evidence for either including or excluding the effect of the group when Bayesian statistics were evaluated. The only exception was the regional analysis for the offset, where results indicated against including the group factor in the model. These findings diverge from previous research on an Italian cohort, which reported decreased exponent and offset in the dyslexic group at rest, specifically within the parieto-occipital region, but not the frontal region ( Turri et al., 2023 ). Despite our study involving twice the number of participants and utilizing a longer acquisition time, we observed no group differences, even in the same cluster of electrodes (refer to Supplementary Material). The participants in both studies were of similar ages. The only methodological difference – EEG acquisition with eyes open in our study versus both eyes-open and eyes-closed in the work by Turri and colleagues (2023) – cannot fully account for the overall lack of group differences observed. The diverging study outcomes highlight the importance of considering potential inflation of effect sizes in studies with smaller samples.

Although a lower exponent of the EEG power spectrum has been associated with other neurodevelopmental disorders, such as ADHD ( Ostlund et al., 2021 ) or ASD (but only in children with IQ below average) ( Manyukhina et al., 2022 ), our study suggests that this is not the case for dyslexia. Considering the frequent comorbidity of dyslexia and ADHD ( Germanò et al., 2010 ; Langer et al., 2019 ), increased neural noise could serve as a common underlying mechanism for both disorders. However, our specific exclusion of participants with a comorbid ADHD diagnosis indicates that the EEG spectral exponent cannot serve as a neurobiological marker for dyslexia in isolation. No information regarding such exclusion criteria was provided in the study by Turri et al. (2023) ; thus, potential comorbidity with ADHD may explain the positive findings related to dyslexia reported therein.

Regarding the aperiodic-adjusted oscillatory EEG activity, Bayesian statistics for beta power, indicated in favor of excluding the group factor from the model. Non-significant group differences in beta power at rest have been previously reported in studies that did not account for aperiodic components ( Babiloni et al., 2012 ; Fraga González et al., 2018 ; Xue et al., 2020 ). This again contrasts with the study by Turri et al. (2023) , which observed lower aperiodic-adjusted beta power (at 15-25 Hz) in the dyslexic group. Concerning beta power during task, our results also contrast with previous studies which showed either reduced ( Spironelli et al., 2008 ) or increased ( Rippon and Brunswick, 2000 ) beta activity in participants with dyslexia. Nevertheless, since both of these studies employed phonological tasks and involved children’s samples, their relevance to our work is limited.

In terms of direct neurometabolite concentrations derived from the MRS, we found no evidence for group differences in either Glu, GABA or Glu/GABA imbalance in the language-sensitive left STS. Conversely, the Bayes Factor suggested against including the group factor in the model for the Glu/GABA ratio. While no previous study has localized the MRS voxel based on the individual activation levels, nonsignificant group differences in Glu and GABA concentrations within the temporo-parietal and visual cortices have been reported in both children and adults ( Kossowski et al., 2019 ), as well as in the ACC in children ( Horowitz-Kraus et al., 2018 ). Although our MRS sample size was half that of the EEG sample, previous research reporting group differences in Glu concentrations involved an even smaller dyslexic cohort (10 participants with dyslexia and 45 typical readers in Pugh et al., 2014 ). Consistent with earlier studies that identified group differences in Glu and GABA concentrations ( Del Tufo et al., 2018 ; Pugh et al., 2014 ) we reported neurometabolite levels relative to total creatine (tCr), indicating that the absence of corresponding results cannot be ascribed to reference differences. Notably, our analysis of the fMRI localizer task revealed greater activation in the control group as compared to the dyslexic group within the left STS for words than control stimuli (see Figure 1E and the Supplementary Material) in line with previous observations ( Blau et al., 2009 ; Dębska et al., 2021 ; Yan et al., 2021 ).

Irrespective of dyslexia status, we found negative correlations between age and exponent and offset, consistent with previous research ( Cellier et al., 2021 ; McSweeney et al., 2021 ; Schaworonkow and Voytek, 2021 ; Voytek et al., 2015 ) and providing further evidence for maturational changes in the aperiodic components (indicative of increased E/I ratio). At the same time, in line with previous MRS works ( Kossowski et al., 2019 ; Marsman et al., 2013 ), we observed a negative correlation between age and Glu concentrations. This suggests a contrasting pattern to EEG results, indicating a decrease in neuronal excitation with age. We also found a condition-dependent change in offset, with a lower offset observed at rest than during the language task. The offset value represents the uniform shift in power across frequencies ( Donoghue et al., 2020 ), with a higher offset linked to increased neuronal spiking rates ( Manning et al., 2009 ). Change in offset between conditions is consistent with observed increased alpha and beta power during the task, indicating elevated activity in both broadband (offset) and narrowband (alpha and beta oscillations) frequency ranges during the language task.

In regard to relationships between EEG and MRS E/I balance biomarkers, we observed a negative correlation between the offset in the left STS (both at rest and during the task) and Glu levels, after controlling for age and GMV. This correlation was not observed in zero-order correlations (see Supplementary Material). Contrary to our predictions, informed by previous studies linking the exponent to E/I ratio ( Colombo et al., 2019 ; Gao et al., 2017 ; Waschke et al., 2021 ), we found the correlation with Glu levels to involve the offset rather than the exponent. This outcome was unexpected, as none of the referenced studies reported results for the offset. However, given the strong correlation between the exponent and offset observed in our study ( r = .68, p < .001, BF 10 > 10000 and r = .72, p < .001, BF 10 > 10000 at rest and during the task respectively) it is conceivable that similar association might be identified for the offset if it were analyzed.

Nevertheless, previous studies examining relationships between EEG and MRS E/I balance biomarkers ( McKeon et al., 2024 ; van Bueren et al., 2023 ) did not identify a similar negative association between Glu and the offset. Instead, one study noted a positive correlation between the Glu/GABA ratio and the exponent ( van Bueren et al., 2023 ), which was significant in the intraparietal sulcus but not in the middle frontal gyrus. This finding presents counterintuitive evidence, suggesting that an increased E/I balance, as indicated by MRS, is associated with a higher aperiodic exponent, considered indicative of decreased E/I balance. In line with this pattern, another study discovered a positive relationship between the exponent and Glu levels in the dorsolateral prefrontal cortex ( McKeon et al., 2024 ). Furthermore, they observed a positive correlation between the exponent and the Glu/GABA imbalance measure, calculated as the absolute residual value of a linear relationship between Glu and GABA ( McKeon et al., 2024 ), a finding replicated in the current work. This implies that a higher spectral exponent might not be directly linked to MRS-derived Glu or GABA levels, but rather to a greater disproportion (in either direction) between these neurotransmitters. These findings, alongside the contrasting relationships between EEG and MRS biomarkers and age, suggest that these methods may reflect distinct biological mechanisms of E/I balance.

Evidence regarding associations between neurotransmitters levels and oscillatory activity also remains mixed. One study found a positive correlation between gamma peak frequency and GABA concentration in the visual cortex ( Muthukumaraswamy et al., 2009 ), a finding later challenged by a study with a larger sample ( Cousijn et al., 2014 ). Similarly, a different study noted a positive correlation between GABA in the left STS and gamma power ( Balz et al., 2016 ), another study, found non-significant relation between these measures ( Wyss et al., 2017 ). Moreover, in a simultaneous EEG and MRS study, an event-related increase in Glu following visual stimulation was found to correlate with greater gamma power ( Lally et al., 2014 ). We could not investigate such associations, as the algorithm failed to identify a gamma peak above the aperiodic component for the majority of participants. Also, contrary to previous findings showing associations between GABA in the motor and sensorimotor cortices and beta power ( Cheng et al., 2017 ; Gaetz et al., 2011 ) or beta peak frequency ( Baumgarten et al., 2016 ), we observed no correlation between Glu or GABA levels and beta power. However, these studies placed MRS voxels in motor regions which are typically linked to movement-related beta activity ( Baker et al., 1999 ; Rubino et al., 2006 ; Sanes and Donoghue, 1993 ) and did not adjust beta power for aperiodic components, making direct comparisons with our findings limited.

Finally, we examined pathways posited by the neural noise hypothesis of dyslexia, through which increased neural noise may impact reading: phonological awareness, lexical access and generalization, and multisensory integration ( Hancock et al., 2017 ). Phonological awareness was positively correlated with the offset in the left STS at rest, and with beta power in the left STS, both at rest and during the task. Additionally, multisensory integration showed correlations with GABA and the Glu/GABA ratio. Since the Bayes Factor did not provide conclusive evidence supporting either the alternative or null hypothesis, these associations appear rather weak. Nonetheless, given the hypothesis’s prediction of a causal link between these variables, we further examined a mediation model involving beta power, phonological awareness, and reading skills. The results suggested a positive indirect effect of beta power on reading via phonological awareness, whereas both the direct (controlling for phonological awareness and age) and total effects (without controlling for phonological awareness) were not significant. This finding is noteworthy, considering that participants with dyslexia exhibited reduced phonological awareness and reading skills, despite no observed differences in beta power. Given the cross-sectional nature of our study, further longitudinal research is necessary to confirm the causal relation among these variables. The effects of GABA and the Glu/GABA ratio on reading, mediated by multisensory integration, warrant further investigation. Additionally, considering our finding that only males with dyslexia showed deficits in multisensory integration ( Glica et al., 2024 ), sex should be considered as a potential moderating factor in future analyses. We did not test this model here due to the smaller sample size for GABA measurements.

Our findings suggest that the neural noise hypothesis, as proposed by Hancock and colleagues (2017) , does not fully explain the reading difficulties observed in dyslexia. Despite the innovative use of both EEG and MRS biomarkers to assess excitatory-inhibitory (E/I) balance, neither method provided evidence supporting an E/I imbalance in dyslexic individuals. Importantly, our study focused on adolescents and young adults, and the EEG recordings were conducted during rest and a spoken language task. These factors may limit the generalizability of our results. Future research should include younger populations and incorporate a broader array of tasks, such as reading and phonological processing, to provide a more comprehensive evaluation of the E/I balance hypothesis. Additionally, our findings are consistent with another study by Tan et al. (2022) which found no evidence for increased variability (’noise’) in behavioral and fMRI response patterns in dyslexia. Together, these results highlight the need to explore alternative neural mechanisms underlying dyslexia and suggest that cortical hyperexcitability may not be the primary cause of reading difficulties.

In conclusion, while our study challenges the neural noise hypothesis as a sole explanatory framework for dyslexia, it also underscores the complexity of the disorder and the necessity for multifaceted research approaches. By refining our understanding of the neural underpinnings of dyslexia, we can better inform future studies and develop more effective interventions for those affected by this condition.

Materials and methods

Participants.

A total of 120 Polish participants aged between 15.09 and 24.95 years ( M = 19.47, SD = 3.06) took part in the study. This included 60 individuals with a clinical diagnosis of dyslexia performed by the psychological and pedagogical counseling centers (28 females and 32 males) and 60 control participants without a history of reading difficulties (28 females and 32 males). All participants were right-handed, born at term, without any reported neurological/psychiatric diagnosis and treatment (including ADHD), without hearing impairment, with normal or corrected-to-normal vision, and IQ higher than 80 as assessed by the Polish version of the Abbreviated Battery of the Stanford-Binet Intelligence Scale-Fifth Edition (SB5) ( Roid et al., 2017 ).

The study was approved by the institutional review board at the University of Warsaw, Poland (reference number 2N/02/2021). All participants (or their parents in the case of underaged participants) provided written informed consent and received monetary remuneration for taking part in the study.

Reading and Reading-Related Tasks

Participants’ reading skills were assessed by multiple paper-pencil tasks described in detail in our previous work ( Glica et al., 2024 ). Briefly, we evaluated words and pseudowords read in one minute ( Szczerbiński and Pelc-Pękała, 2013 ), rapid automatized naming ( Fecenec et al., 2013 ), and reading comprehension speed. We also assessed phonological awareness by a phoneme deletion task ( Szczerbiński and Pelc-Pękała, 2013 ) and spoonerisms tasks ( Bogdanowicz et al., 2016 ), as well as orthographic awareness (Awramiuk and Krasowicz-Kupis, 2013). Furthermore, we evaluated non-verbal perception speed ( Ciechanowicz and Stańczak, 2006 ) and short-term and working memory by forward and backward conditions from the Digit Span subtest from the WAIS-R ( Wechsler, 1981 ). We also assessed participants’ multisensory audiovisual integration by a redundant target effect task, which results have been reported in our previous work ( Glica et al., 2024 ).

Electroencephalography Acquisition and Procedure

EEG was recorded from 62 scalp and 2 ear electrodes using the Brain Products system (actiCHamp Plus, Brain Products GmbH, Gilching, Germany). Data were recorded in BrainVision Recorder Software (Vers. 1.22.0002, Brain Products GmbH, Gilching, Germany) with a 500 Hz sampling rate. Electrodes were positioned in line with the extended 10-20 system. Electrode Cz served as an online reference, while the Fpz as a ground electrode. All electrodes’ impedances were kept below 10 kΩ. Participants sat in a chair with their heads on a chin-rest in a dark, sound-attenuated, and electrically shielded room while the EEG was recorded during both a 5-minute eyes-open resting state and the spoken language comprehension task. The paradigm was prepared in the Presentation software (Version 20.1, Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com ).

During rest, participants were instructed to relax and fixate their eyes on a white cross presented centrally on a black background. After 5 minutes, the spoken language comprehension task automatically started. The task consisted of 3 to 5 word-long sentences recorded in a speech synthesizer which were presented binaurally through sound-isolating earphones. After hearing a sentence, participants were asked to indicate whether the sentence was true or false by pressing a corresponding button. In total, there were 256 sentences – 128 true (e.g., “Plants need water”) and 128 false (e.g., “Dogs can fly”).

Sentences were presented in a random order in two blocks of 128 trials. At the beginning of each trial, a white fixation cross was presented centrally on a black background for 500 ms, then a blank screen appeared for either 500, 600, 700, or 800 ms (durations set randomly and equiprobably) followed by an auditory sentence presentation. The length of sentences ranged between 1.17 and 2.78 seconds and was balanced between true ( M = 1.82 seconds, SD = 0.29) and false sentences ( M = 1.82 seconds, SD = 0.32; t (254) = -0.21, p = .835; BF 10 = 0.14). After a sentence presentation, a blank screen was displayed for 1000 ms before starting the next trial. To reduce participants’ fatigue, a 1-minute break between two blocks of trials was introduced, and it took approximately 15 minutes to complete the task.

fMRI Acquisition and Procedure

MRI data were acquired using Siemens 3T Trio system with a 32-channel head coil. Structural data were acquired using whole brain 3D T1-weighted image (MP_RAGE, TI = 1100 ms, GRAPPA parallel imaging with acceleration factor PE = 2, voxel resolution = 1mm 3 , dimensions = 256×256×176). Functional data were acquired using whole-brain echo planar imaging sequence (TE = 30ms, TR = 1410 ms, flip angle FA = 90°, FOV = 212 mm, matrix size = 92×92, 60 axial slices 2.3mm thick, 2.3×2.3 mm in-plane resolution, multiband acceleration factor = 3). Due to a technical issue, data from two participants were acquired with a 12-channel coil (see Supplementary Material).

The fMRI task served as a localizer for later MRS voxel placement in language-sensitive left STS. The task was prepared using Presentation software (Version 20.1, Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com ) and consisted of three runs, each lasting 5 minutes and 9 seconds. Two runs involved the presentation of visual stimuli, while the third run of auditory stimuli. In each run, stimuli were presented in 12 blocks, with 14 stimuli per block. In visual runs, there were four blocks from each category: 1) 3 to 4 letters-long words, 2) the same words presented as a false font string (BACS font) ( Vidal et al., 2017 ), and 3) strings of 3 to 4-long consonants. Similarly, in the auditory run, there were four blocks from each category: 1) words recorded in a speech synthesizer, 2) the same words presented backward, and 3) consonant strings recorded in a speech synthesizer. Stimuli within each block were presented for 800 ms with a 400 ms break in between. The duration of each block was 16.8 seconds. Between blocks, a fixation cross was displayed for 8 seconds. Participants performed a 1-back task to maintain focus. The blocks were presented in a pseudorandom order and each block included 2 to 3 repeated stimuli.

MRS Acquisition and Procedure

The GE 7T system with a 32-channel coil was utilized. Structural data were acquired using whole brain 3D T1-weighted image (3D-SPGR BRAVO, TI = 450ms, TE = 2.6ms, TR = 6.6ms, flip angle = 12 deg, bandwidth = ±32.5kHz, ARC acceleration factor PE = 2, voxel resolution = 1mm, dimensions = 256 x 256 x 180). MRS spectra with 320 averages were acquired from the left STS using single-voxel spectroscopy semiLaser sequence ( Deelchand et al., 2021 ) (voxel size = 15 x 15 x 15 mm, TE = 28ms, TR = 4000ms, 4096 data points, water suppressed using VAPOR). Eight averages with unsuppressed water as a reference were collected.

To localize left STS, T1-weighted images from fMRI and MRS sessions were coregistered and fMRI peak coordinates were used as a center of voxel volume for MRS. Voxels were then adjusted to include only the brain tissue. During the acquisition, participants took part in a simple orthographic task.

Statistical Analyses

The continuous EEG signal was preprocessed in the EEGLAB ( Delorme and Makeig, 2004 ). The data were filtered between 0.5 and 45 Hz (Butterworth filter, 4th order) and re-referenced to the average of both ear electrodes. The data recorded during the break between blocks, as well as bad channels, were manually rejected. The number of rejected channels ranged between 0 and 4 ( M = 0.19, SD = 0.63). Next, independent component analysis (ICA) was applied. Components were automatically labeled by ICLabel ( Pion-Tonachini et al., 2019 ), and those classified with 50-100% source probability as eye blinks, muscle activity, heart activity, channel noise, and line noise, or with 0-50% source probability as brain activity, were excluded. Components labeled as “other” were visually inspected, and those identified as eye blinks and muscle activity were also rejected. The number of rejected components ranged between 11 and 46 ( M = 28.43, SD = 7.26). Previously rejected bad channels were interpolated using the nearest neighbor spline ( Perrin et al., 1989 , 1987 ).

The preprocessed data were divided into a 5-minute resting-state signal and a signal recorded during a spoken language comprehension task using MNE ( Gramfort, 2013 ) and custom Python scripts. The signal from the task was cut up based on the event markers indicating the beginning and end of a sentence. Only trials with correct responses given between 0 and 1000 ms after the end of a sentence were included. The signals recorded during every trial were further multiplied by the Tukey window with α = 0.01 in order to normalize signal amplitudes at the beginning and end of every trial. This allowed a smooth concatenation of signals recorded during task trials, resulting in a continuous signal derived only when participants were listening to the sentences.

The continuous signal from the resting state and the language task was epoched into 2-second-long segments. An automatic rejection criterion of +/-200 μV was applied to exclude epochs with excessive amplitudes. The number of epochs retained in the analysis ranged between 140–150 ( M = 149.66, SD = 1.20) in the resting state condition and between 102–226 ( M = 178.24, SD = 28.94) in the spoken language comprehension task.

Power spectral density (PSD) for 0.5-45 Hz in 0.5 Hz increments was calculated for every artifact-free epoch using Welch’s method for 2-second-long data segments windowed with a Hamming window with no overlap. The estimated PSDs were averaged for each participant and each channel separately for the resting state condition and the language task. Aperiodic and periodic (oscillatory) components were parameterized using the FOOOF method ( Donoghue et al., 2020 ). For each PSD, we extracted parameters for the 1-43 Hz frequency range using the following settings: peak_width_limits = [1, 12], max_n_peaks = infinite, peak_threshold = 2.0, mean_peak_height = 0.0, aperiodic_mode = ‘fixed’. Apart from broad-band aperiodic parameters (exponent and offset), we also extracted power, bandwidth, and the center frequency parameters for the theta (4-7 Hz), alpha (7-14 Hz), beta (14-30 Hz) and gamma (30-43 Hz) bands. Since in the majority of participants, the algorithm did not find the peak above the aperiodic component in theta and gamma bands, we calculated the results only for the alpha and beta bands. The results for other periodic parameters than the beta power are reported in Supplementary Material.

Apart from the frequentist statistics, we also performed Bayesian statistics using JASP ( JASP Team, 2023 ). For Bayesian repeated measures ANOVA, we reported the Bayes Factor for the inclusion of a given effect (BF incl ) with the ’across matched model’ option, as suggested by Keysers and colleagues (2020) , calculated as a likelihood ratio of models with a presence of a specific factor to equivalent models differing only in the absence of the specific factor. For Bayesian t -tests and correlations, we reported the BF 10 value, indicating the ratio of the likelihood of an alternative hypothesis to a null hypothesis. We considered BF incl/10 > 3 and BF incl/10 < 1/3 as evidence for alternative and null hypotheses respectively, while 1/3 < BF incl/10 < 3 as the absence of evidence ( Keysers et al., 2020 ).

MRS voxel localization in the native space

The data were analyzed using Statistical Parametric Mapping (SPM12, Wellcome Trust Centre for Neuroimaging, London, UK) run on MATLAB R2020b (The MathWorks Inc., Natick, MA, USA). First, all functional images were realigned to the participant’s mean. Then, T1-weighted images were coregistered to functional images for each subject. Finally, fMRI data were smoothed with a 6mm isotropic Gaussian kernel.

In each subject, the left STS was localized in the native space as a cluster in the middle and posterior left superior temporal sulcus, exhibiting higher activation for visual words versus false font strings and auditory words versus backward words (logical AND conjunction) at p < .01 uncorrected. For 6 participants, the threshold was lowered to p < .05 uncorrected, while for another 6 participants, the contrast from the auditory run was changed to auditory words versus fixation cross due to a lack of activation for other contrasts.

In the Supplementary Material, we also performed the group-level analysis of the fMRI data (Tables S5-S7 and Figure S1).

MRS data were analyzed using fsl-mrs version 2.0.7 ( Clarke et al., 2021 ). Data stored in pfile format were converted into NIfTI-MRS using spec2nii tool. We then used the fsl_mrs_preproc function to automatically perform coil combination, frequency and phase alignment, bad average removal, combination of spectra, eddy current correction, shifting frequency to reference peak and phase correction.

To obtain information about the percentage of WM, GM and CSF in the voxel we used the svs_segmentation with results of fsl_anat as an input. Voxel segmentation was performed on structural images from a 3T scanner, coregistered to 7T structural images in SPM12. Next, quantitative fitting was performed using fsl_mrs function. As a basis set, we utilized a collection of 27 metabolite spectra simulated using FID-A ( Simpson et al., 2017 ) and a script tailored for our experiment. We supplemented this with synthetic macromolecule spectra provided by fsl_mrs . Signals acquired with unsuppressed water served as water reference.

Spectra underwent quantitative assessment and visual inspection and those with linewidth higher than 20Hz, %CRLB higher than 20%, and poor fit to the model were excluded from the analysis (see Table S8 in the Supplementary Material for a detailed checklist). Glu and GABA concentrations were expressed as a ratio to total-creatine (tCr; Creatine + Phosphocreatine).

Data Availability Statement

Behavioral data, raw and preprocessed EEG data, 2 nd level fMRI data, preprocessed MRS data and Python script for the analysis of preprocessed EEG data can be found at OSF: https://osf.io/4e7ps/

Acknowledgements

This study was supported by the National Science Centre grant (2019/35/B/HS6/01763) awarded to Katarzyna Jednoróg.

We gratefully acknowledge valuable discussions with Ralph Noeske from GE Healthcare for his support in setting up the protocol for an ultra-high field MR spectroscopy and sharing the set-up for basis set simulation in FID-A.

  • Buitelaar J
  • dos Santos FP
  • Verschure PFMJ
  • McAlonan G.
  • Krasowicz-Kupis G
  • Albertini G
  • Roa Romero Y
  • Ittermann B
  • Senkowski D
  • Baumgarten TJ
  • Oeltzschner G
  • Hoogenboom N
  • Wittsack H-J
  • Schnitzler A
  • van Atteveldt N
  • Bogdanowicz KM
  • Bogdanowicz M
  • Sajewicz-Radtke U
  • Karpińska E
  • Łockiewicz M
  • Ciechanowicz A
  • Napolitani M
  • Gosseries O
  • Casarotto S
  • Brichant J-F
  • Massimini M
  • Chieregato A
  • Harrison PJ
  • Dzięgiel-Fivet G
  • Łuniewska M
  • Grabowska A
  • Deelchand DK
  • Berrington A
  • Seraji-Bozorgzad N
  • Del Tufo SN
  • Fulbright RK
  • Peterson EJ
  • Sebastian P
  • Jaworowska A
  • Yingling CD
  • Johnstone J
  • Davenport L
  • Finkelman T
  • Furman-Haran E
  • Fraga González G
  • van der Molen MJW
  • de Geus EJC
  • van der Molen MW.
  • Roberts TPL
  • Giacometti P
  • Wasilewska K
  • Kossowski B
  • Żygierewicz J
  • Horowitz-Kraus T
  • Ermentrout B
  • Wagenmakers E-J
  • Bogorodzki P
  • Roberts M V.
  • Haenschel C
  • Lasnick OHM
  • MacMaster FP
  • Villiermet N
  • Manyukhina VO
  • Prokofyev AO
  • Obukhova TS
  • Schneiderman JF
  • Altukhov DI
  • Stroganova TA
  • Orekhova E V
  • Marchesotti S
  • Donoghue JP
  • van den Heuvel MP
  • Hilleke E. HP
  • Hetherington H
  • McSweeney M
  • Swerdlow NR
  • Muthukumaraswamy SD
  • Swettenham JB
  • Karalunas SL
  • Echallier JF
  • Pion-Tonachini L
  • Kreutz-Delgado K
  • Edenberg HJ
  • Chorlian DB
  • O’Connor SJ
  • Rohrbaugh J
  • Schuckit MA
  • Hesselbrock V
  • Conneally PM
  • Tischfield JA
  • Begleiter H
  • Grigorenko EL
  • Seidenberg MS
  • Brunswick N
  • Hatsopoulos NG
  • Salvatore S V.
  • Zorumski CF
  • Mennerick S
  • Schaworonkow N
  • Scrivener CL
  • Hennessy TJ
  • Spironelli C
  • Penolazzi B
  • Szczerbiński M
  • Pelc-Pękała O
  • van Bueren NER
  • van der Ven SHG
  • Cohen Kadosh R.
  • Van Hirtum T
  • Ghesquière P
  • Tempesta ZR
  • Achermann R

Article and author information

Katarzyna jednoróg, for correspondence:, version history.

  • Sent for peer review : June 11, 2024
  • Preprint posted : June 12, 2024
  • Reviewed Preprint version 1 : September 5, 2024

© 2024, Glica et al.

This article is distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use and redistribution provided that the original author and source are credited.

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Be the first to read new articles from eLife

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

applsci-logo

Article Menu

difference between statement and hypothesis

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Effect of dietary enrichment with hempseed ( cannabis sativa l.) on blood pressure changes in growing mice between ages of 5 and 30 weeks.

difference between statement and hypothesis

1. Introduction

2. materials and methods, 2.1. experimental design, 2.3. measurement of blood pressure and area under the curve (auc) analysis, 2.4. measurement of body composition (dxa scan), 2.5. calculations of bs, bmi, lmi, and fmi, 2.6. statistical analysis, 3.1. effect of diet and age on body weight, length, surface area, bmi, lmi, and fmi, 3.2. effect of diet and age on systolic, diastolic, and mean arterial blood pressure, 3.3. relationship between body mass and body composition and systolic, diastolic, and mean arterial blood pressure, 4. discussion, 5. conclusions, supplementary materials, author contributions, institutional review board statement, informed consent statement, data availability statement, acknowledgments, conflicts of interest.

  • Tănase Apetroaei, V.; Pricop, E.M.; Istrati, D.I.; Vizireanu, C. Hemp Seeds ( Cannabis sativa L.) as a Valuable Source of Natural Ingredients for Functional Foods—A Review. Molecules 2024 , 29 , 2097. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Farinon, B.; Molinari, R.; Costantini, L.; Merendino, N. The Seed of Industrial Hemp ( Cannabis sativa L.): Nutritional Quality and Potential Functionality for Human Health and Nutrition. Nutrients 2020 , 12 , 1935. [ Google Scholar ] [ CrossRef ]
  • Montero, L.; Ballesteros-Vivas, D.; Gonzalez-Barrios, A.F.; Sánchez-Camargo, A.D.P. Hemp Seeds: Nutritional Value, Associated Bioactivities and the Potential Food Applications in the Colombian Context. Front. Nutr. 2022 , 9 , 1039180. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Rodriguez-Leyva, D.; Pierce, G.N. The Cardiac and Haemostatic Effects of Dietary Hempseed. Nutr. Metab. 2010 , 7 , 32. [ Google Scholar ] [ CrossRef ]
  • Kakkar, S.; Tandon, R.; Tandon, N. The Rising Status of Edible Seeds in Lifestyle Related Diseases: A Review. Food Chem. 2023 , 402 , 134220. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Aidoo, R.; Abe-Inge, V.; Kwofie, E.M.; Baum, J.I.; Kubow, S. Sustainable Healthy Diet Modeling for a Plant-Based Dietary Transitioning in the United States. npj Sci. Food 2023 , 7 , 61. [ Google Scholar ] [ CrossRef ]
  • Mylan, J.; Andrews, J.; Maye, D. The Big Business of Sustainable Food Production and Consumption: Exploring the Transition to Alternative Proteins. Proc. Natl. Acad. Sci. USA 2023 , 120 , e2207782120. [ Google Scholar ] [ CrossRef ]
  • Rizzo, G.; Storz, M.A.; Calapai, G. The Role of Hemp ( Cannabis sativa L.) as a Functional Food in Vegetarian Nutrition. Foods 2023 , 12 , 3505. [ Google Scholar ] [ CrossRef ]
  • PR Newswire. Global $ 544.93 Million Hemp Seeds Markets to 2027. PR Newswire US . 2021. Available online: https://www.prnewswire.com/news-releases/global-544-93-million-hemp-seeds-markets-to-2027--301284430.html (accessed on 28 August 2024).
  • Databridge Market Research. Global Hemp Seed Market—Industry Trends and Forecast to 2030. 2023. Available online: https://www.databridgemarketresearch.com/reports/global-hemp-seed-market (accessed on 28 August 2024).
  • Opyd, P.M.; Jurgoński, A.; Fotschki, B.; Juśkiewicz, J. Dietary Hemp Seeds More Effectively Attenuate Disorders in Genetically Obese Rats than Their Lipid Fraction. J. Nutr. 2020 , 150 , 1425–1433. [ Google Scholar ] [ CrossRef ]
  • Majewski, M.; Jurgoński, A. The Effect of Hemp ( Cannabis sativa L.) Seeds and Hemp Seed Oil on Vascular Dysfunction in Obese Male Zucker Rats. Nutrients 2021 , 13 , 2575. [ Google Scholar ] [ CrossRef ]
  • Kaushal, N.; Dhadwal, S.; Kaur, P. Ameliorative Effects of Hempseed (Cannabis Sativa) against Hypercholesterolemia Associated Cardiovascular Changes. Nutr. Metab. Cardiovasc. Dis. 2020 , 30 , 330–338. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Prociuk, M.A.; Edel, A.L.; Richard, M.N.; Gavel, N.T.; Ander, B.P.; Dupasquier, C.M.C.; Pierce, G.N. Cholesterol-Induced Stimulation of Platelet Aggregation Is Prevented by a Hempseed-Enriched Diet. Can. J. Physiol. Pharmacol. 2008 , 86 , 153–159. [ Google Scholar ] [ CrossRef ]
  • Girgih, A.T.; Alashi, A.; He, R.; Malomo, S.; Aluko, R.E. Preventive and Treatment Effects of a Hemp Seed ( Cannabis sativa L.) Meal Protein Hydrolysate against High Blood Pressure in Spontaneously Hypertensive Rats. Eur. J. Nutr. 2014 , 53 , 1237–1246. [ Google Scholar ] [ CrossRef ]
  • Al-Khalifa, A.; Maddaford, T.G.; Chahine, M.N.; Austria, J.A.; Edel, A.L.; Richard, M.N.; Ander, B.P.; Gavel, N.; Kopilas, M.; Ganguly, R.; et al. Effect of Dietary Hempseed Intake on Cardiac Ischemia-Reperfusion Injury. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007 , 292 , R1198–R1203. [ Google Scholar ] [ CrossRef ]
  • Saberivand, A.; Karimi, I.; Becker, L.A.; Moghaddam, A.; Azizi-Mahmoodjigh, S.; Yousefi, M.; Zavareh, S. The Effects of Cannabis sativa L. Seed (Hempseed) in the Ovariectomized Rat Model of Menopause. Methods Find. Exp. Clin. Pharmacol. 2010 , 32 , 467–473. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Munteanu, C.; Mihai, M.; Dulf, F.; Ona, A.; Muntean, L.; Ranga, F.; Urdă, C.; Pop, D.; Mihaiescu, T.; Mârza, S.M.; et al. Biochemical Changes Induced by the Administration of Cannabis Sativa Seeds in Diabetic Wistar Rats. Nutrients 2023 , 15 , 2944. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Samsamikor, M.; Mackay, D.S.; Mollard, R.C.; Alashi, A.M.; Aluko, R.E. Hemp Seed Protein and Its Hydrolysate Compared with Casein Protein Consumption in Adults with Hypertension: A Double-Blind Crossover Study. Am. J. Clin. Nutr. 2024 , 120 , 56–65. [ Google Scholar ] [ CrossRef ]
  • Fuchs, F.D.; Whelton, P.K. High Blood Pressure and Cardiovascular Disease. Hypertension 2020 , 75 , 285–292. [ Google Scholar ] [ CrossRef ]
  • Tiemann, K.; Weyer, D.; Djoufack, P.C.; Ghanem, A.; Lewalter, T.; Dreiner, U.; Meyer, R.; Grohe, C.; Fink, K.B. Increasing Myocardial Contraction and Blood Pressure in C57BL/6 Mice during Early Postnatal Development. Am. J. Physiol. Heart Circ. Physiol. 2003 , 284 , H464–H474. [ Google Scholar ] [ CrossRef ]
  • Dutta, S.; Sengupta, P. Men and Mice: Relating Their Ages. Life Sci. 2016 , 152 , 244–248. [ Google Scholar ] [ CrossRef ]
  • Reeves, P.G. Components of the AIN-93 Diets as Improvements in the AIN-76A Diet. J. Nutr. 1997 , 127 , 838S–841S. [ Google Scholar ] [ CrossRef ]
  • Wang, Y.; Thatcher, S.E.; Cassis, L.A. Measuring Blood Pressure Using a Noninvasive Tail Cuff Method in Mice. Methods Mol. Biol. 2017 , 1614 , 69–73. [ Google Scholar ] [ CrossRef ]
  • Daugherty, A.; Rateri, D.; Hong, L.; Balakrishnan, A. Measuring Blood Pressure in Mice Using Volume Pressure Recording, a Tail-Cuff Method. J. Vis. 2009 , 27 , e1291. [ Google Scholar ] [ CrossRef ]
  • Feng, M.; DiPetrillo, K. Non-Invasive Blood Pressure Measurement in Mice. Methods Mol. Biol. 2009 , 573 , 45–55. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Cook, N.R.; Rosner, B.A.; Chen, W.; Srinivasan, S.R.; Berenson, G.S. Using the Area under the Curve to Reduce Measurement Error in Predicting Young Adult Blood Pressure from Childhood Measures. Stat. Med. 2004 , 23 , 3421–3435. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Burgess, K.; Jovanović, S.; Sudhir, R.; Jovanović, A. Area under the Curve Analysis of Blood Pressure Reveals Increased Spontaneous Locomotor Activity in SPAK Knock-in Mice: Relevance for Hypotension Induced by SPAK Inhibition? Physiol. Rep. 2019 , 7 , e13997. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Jungers, W.L. Scaling. Why Is Animal Size so Important? By K. Schmidt-Nielsen. New York: Cambridge University Press. 1984. Xi + 241 pp., Figures, Tables, Appendices, References, Index. $ 29.95 (Cloth), $ 9.95 (Paper). Am. J. Phys. Anthropol. 1986 , 69 , 129–130. [ Google Scholar ] [ CrossRef ]
  • Cheung, M.C.; Spalding, P.B.; Gutierrez, J.C.; Balkan, W.; Namias, N.; Koniaris, L.G.; Zimmers, T.A. Body Surface Area Prediction in Normal, Hypermuscular, and Obese Mice. J. Surg. Res. 2009 , 153 , 326–331. [ Google Scholar ] [ CrossRef ]
  • Gouma, E.; Simos, Y.; Verginadis, I.; Lykoudis, E.; Evangelou, A.; Karkabounas, S. A Simple Procedure for Estimation of Total Body Surface Area and Determination of a New Value of Meeh’s Constant in Rats. Lab. Anim. 2012 , 46 , 40–45. [ Google Scholar ] [ CrossRef ]
  • Gargiulo, S.; Gramanzini, M.; Megna, R.; Greco, A.; Albanese, S.; Manfredi, C.; Brunetti, A. Evaluation of Growth Patterns and Body Composition in C57Bl/6J Mice Using Dual Energy X-Ray Absorptiometry. Biomed. Res. Int. 2014 , 2014 , 253067. [ Google Scholar ] [ CrossRef ]
  • Gros, R.; Van Wert, R.; You, X.; Thorin, E.; Husain, M. Effects of Age, Gender, and Blood Pressure on Myogenic Responses of Mesenteric Arteries from C57BL/6 Mice. Am. J. Physiol. Heart Circ. Physiol. 2002 , 282 , H380–H388. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Wiesmann, F.; Ruff, J.; Hiller, K.H.; Rommel, E.; Haase, A.; Neubauer, S. Developmental Changes of Cardiac Function and Mass Assessed with MRI in Neonatal, Juvenile, and Adult Mice. Am. J. Physiol. Heart Circ. Physiol. 2000 , 278 , H652–H657. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Urbina, E.M.; Mendizábal, B.; Becker, R.C.; Daniels, S.R.; Falkner, B.E.; Hamdani, G.; Hanevold, C.; Hooper, S.R.; Ingelfinger, J.R.; Lanade, M.; et al. Association of Blood Pressure Level With Left Ventricular Mass in Adolescents. Hypertension 2019 , 74 , 590–596. [ Google Scholar ] [ CrossRef ]
  • Frazzini, S.; Torresani, M.C.; Roda, G.; Dell’Anno, M.; Ruffo, G.; Rossi, L. Chemical and Functional Characterization of the Main Bioactive Molecules Contained in Hulled Cannabis sativa L. Seeds for Use as Functional Ingredients. J. Agric. Food Res. 2024 , 16 , 101084. [ Google Scholar ] [ CrossRef ]
  • Senila, L.; Neag, E.; Cadar, O.; Kovacs, M.H.; Becze, A.; Senila, M. Chemical, Nutritional and Antioxidant Characteristics of Different Food Seeds. Appl. Sci. 2020 , 10 , 1589. [ Google Scholar ] [ CrossRef ]
  • Malomo, S.A.; Onuh, J.O.; Girgih, A.T.; Aluko, R.E. Structural and Antihypertensive Properties of Enzymatic Hemp Seed Protein Hydrolysates. Nutrients 2015 , 7 , 7616–7632. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Cerrato, A.; Lammi, C.; Laura Capriotti, A.; Bollati, C.; Cavaliere, C.; Maria Montone, C.; Bartolomei, M.; Boschin, G.; Li, J.; Piovesana, S.; et al. Isolation and Functional Characterization of Hemp Seed Protein-Derived Short- and Medium-Chain Peptide Mixtures with Multifunctional Properties for Metabolic Syndrome Prevention. Food Res. Int. 2023 , 163 , 112219. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Gupta, S.; Sen, U. More than Just an Enzyme: Dipeptidyl Peptidase-4 (DPP-4) and Its Association with Diabetic Kidney Remodelling. Pharmacol. Res. 2019 , 147 , 104391. [ Google Scholar ] [ CrossRef ]
  • Chen, H.-H.; Li, W.; Wang, Y.; Xu, B.; Hu, X.; Li, X.-B.; Liu, J.-Y.; Zhang, C.; Zhang, C.-Y.; Xing, X.-H. Mining and Validation of Novel Hemp Seed-Derived DPP-IV-Inhibiting Peptides Using a Combination of Multi-Omics and Molecular Docking. J. Agric. Food Chem. 2023 , 71 , 9164–9174. [ Google Scholar ] [ CrossRef ]
  • Aita, S.E.; Montone, C.M.; Taglioni, E.; Capriotti, A.L. Chapter Six—Hempseed Protein-Derived Short- and Medium-Chain Peptides and Their Multifunctional Properties. In Advances in Food and Nutrition Research ; Toldrá, F., Ed.; Academic Press: Cambridge, MA, USA, 2024; Volume 110, pp. 275–325. ISBN 1043-4526. [ Google Scholar ]
  • Chen, H.; Xu, B.; Wang, Y.; Li, W.; He, D.; Zhang, Y.; Zhang, X.; Xing, X. Emerging Natural Hemp Seed Proteins and Their Functions for Nutraceutical Applications. Food Sci. Hum. Wellness 2023 , 12 , 929–941. [ Google Scholar ] [ CrossRef ]
  • Aiello, G.; Lammi, C.; Boschin, G.; Zanoni, C.; Arnoldi, A. Exploration of Potentially Bioactive Peptides Generated from the Enzymatic Hydrolysis of Hempseed Proteins. J. Agric. Food Chem. 2017 , 65 , 10174–10184. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Amponsah-Offeh, M.; Diaba-Nuhoho, P.; Speier, S.; Morawietz, H. Oxidative Stress, Antioxidants and Hypertension. Antioxidants 2023 , 12 , 281. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Griendling, K.K.; Camargo, L.L.; Rios, F.J.; Alves-Lopes, R.; Montezano, A.C.; Touyz, R.M. Oxidative Stress and Hypertension. Circ. Res. 2021 , 128 , 993–1020. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Ma, J.; Guo, C.-Y.; Li, H.-B.; Wu, S.-H.; Li, G.-L. Prophylactic Effects of Hemp Seed Oil on Perimenopausal Depression: A Role of HPA Axis. J. Oleo Sci. 2023 , 72 , 939–955. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Seely, E.W.; Walsh, B.W.; Gerhard, M.D.; Williams, G.H. Estradiol With or Without Progesterone and Ambulatory Blood Pressure in Postmenopausal Women. Hypertension 1999 , 33 , 1190–1194. [ Google Scholar ] [ CrossRef ]
  • Wojcik, M.; Krawczyk, M.; Wojcik, P.; Cypryk, K.; Wozniak, L.A. Molecular Mechanisms Underlying Curcumin-Mediated Therapeutic Effects in Type 2 Diabetes and Cancer. Oxid. Med. Cell. Longev. 2018 , 2018 , 9698258. [ Google Scholar ] [ CrossRef ]
  • Sparks, C.A.; Streff, H.M.; Williams, D.W.; Blanton, C.A.; Gabaldón, A.M. Dietary Hempseed Decreases Femur Maximum Load in a Young Female C57BL/6 Mouse Model but Does Not Influence Bone Mineral Density or Micro-Architecture. Nutrients 2022 , 14 , 4224. [ Google Scholar ] [ CrossRef ]
  • Blanton, C.A.; Barrott, J.J.; Kunz, K.; Bunde, E.; Streff, H.M.; Sparks, C.A.; Williams, D.W.; Gabaldόn, A.M. The Impact of Hempseed Consumption on Bone Parameters and Body Composition in Growing Female C57BL/6 Mice. Int. J. Environ. Res. Public Health 2022 , 19 , 5839. [ Google Scholar ] [ CrossRef ]

Click here to enlarge figure

Ingredient, g per kg DietControl Diet 5% Hempseed15% Hempseed
Casein, High Nitrogen200185155
L-Cystine333
Sucrose 100100100
Cornstarch397.486395.99392.997
Dyetrose132132132
Soybean Oil705216
t-Butylhydroquinone0.0140.010.003
Cellulose5034.53.5
Mineral Mix #210025 353535
Vitamin Mix # 310025 101010
Choline Bitartrate2.52.52.5
Hempseed 050150
Total 100010001000
Kilocalories per kg376038143922
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Blanton, C.A.; Streff, H.M.; Gabaldón, A.M. Effect of Dietary Enrichment with Hempseed ( Cannabis sativa L.) on Blood Pressure Changes in Growing Mice between Ages of 5 and 30 Weeks. Appl. Sci. 2024 , 14 , 8006. https://doi.org/10.3390/app14178006

Blanton CA, Streff HM, Gabaldón AM. Effect of Dietary Enrichment with Hempseed ( Cannabis sativa L.) on Blood Pressure Changes in Growing Mice between Ages of 5 and 30 Weeks. Applied Sciences . 2024; 14(17):8006. https://doi.org/10.3390/app14178006

Blanton, Cynthia A., Hailey M. Streff, and Annette M. Gabaldón. 2024. "Effect of Dietary Enrichment with Hempseed ( Cannabis sativa L.) on Blood Pressure Changes in Growing Mice between Ages of 5 and 30 Weeks" Applied Sciences 14, no. 17: 8006. https://doi.org/10.3390/app14178006

Article Metrics

Article access statistics, supplementary material.

ZIP-Document (ZIP, 58 KiB)

Further Information

Mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

IMAGES

  1. 13 Different Types of Hypothesis (2024)

    difference between statement and hypothesis

  2. How to Write a Hypothesis: The Ultimate Guide with Examples

    difference between statement and hypothesis

  3. Research Hypothesis: Definition, Types, Examples and Quick Tips

    difference between statement and hypothesis

  4. Difference Between Thesis and Hypothesis

    difference between statement and hypothesis

  5. How to Write a Hypothesis: The Ultimate Guide with Examples

    difference between statement and hypothesis

  6. Research Hypothesis: Definition, Types, Examples and Quick Tips

    difference between statement and hypothesis

VIDEO

  1. NEGATIVE RESEARCH HYPOTHESIS STATEMENTS l 3 EXAMPLES l RESEARCH PAPER WRITING GUIDE l THESIS TIPS

  2. What Is A Hypothesis?

  3. Problem solving of Testing of Hypothesis for difference between two population means

  4. What is the difference between statement &PreparedStatement in JDBC ?#jdbc #statement

  5. Characteristics of Hypothesis Statement

  6. What is difference between statement and expression in JavaScript?

COMMENTS

  1. What is the difference between a thesis statement and a hypothesis

    Learn the difference between a thesis statement and a hypothesis statement in research papers. A thesis statement summarizes the main point, while a hypothesis predicts the relationship between variables.

  2. The Real Differences Between Thesis and Hypothesis (With table)

    Learn the main differences between a thesis and a hypothesis, two terms often confused in research projects. A thesis is an assertion that can be proven or disproven, while a hypothesis is a statement that can be tested by scientific research.

  3. Should I use a research question, hypothesis, or thesis statement?

    Learn how to choose the right way to present your research problem in your introduction depending on the nature of your paper. A thesis statement is for an argumentative paper, a research question is for an empirical paper, and a hypothesis is a prediction to test.

  4. Research Hypothesis: Definition, Types, Examples and Quick Tips

    A research hypothesis is a statement that predicts the findings, data, and conclusion of a scientific research paper. Learn the difference between a hypothesis and a prediction, the types of hypotheses, and how to write a strong hypothesis with examples.

  5. Thesis Vs Hypothesis: Understanding The Basis And The Key Differences

    Learn how to distinguish between a thesis and a hypothesis, two common terms in academic writing and research. A thesis is a clear statement of the main argument, while a hypothesis is a testable prediction or explanation that can be proven or disproven.

  6. What is a Hypothesis

    A hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation. Learn about the types, applications, and writing of hypotheses in different fields.

  7. How to Write a Strong Hypothesis

    Learn how to formulate a hypothesis for your research project, based on a research question, existing theories and data. Find out how to phrase your hypothesis in different ways and write a null hypothesis for statistical testing.

  8. Theory vs. Hypothesis: Basics of the Scientific Method

    Learn the difference between a theory and a hypothesis in science, and how they relate to the scientific method. A theory is a well-supported explanation of a natural phenomenon, while a hypothesis is a testable prediction based on a theory.

  9. What is the difference between hypothesis, thesis statement and

    The hypothesis can help defend, support, explain or disprove, argue against the thesis statement.Usually the hypothesis measures specific issues or variables-two or more and therefore should be testable. The thesis statement creates a background while the hypothesis creates a means to measure the interrelationship.

  10. What Is A Research Hypothesis? A Simple Definition

    A research hypothesis is a statement about the expected outcome of a study that is clear, specific and testable. Learn how to write a research hypothesis, the difference between a null and alternative hypothesis, and see examples from academic research.

  11. Scientific hypothesis

    A scientific hypothesis is an idea that proposes a tentative explanation for a phenomenon or a set of phenomena. It is falsifiable and testable, and can be supported or refuted by observation and experimentation. Learn more about the features, formulation, and examples of scientific hypotheses.

  12. Hypothesis: Definition, Examples, and Types

    A hypothesis is a testable prediction about the relationship between variables in a study. Learn how to formulate a good hypothesis, the elements of a hypothesis, and the types of hypotheses used in psychology research.

  13. Develop a Thesis/Hypothesis

    B oth the hypothesis statement and the thesis statement answer the research question of the study. When the statement is one that can be proved or disproved, it is an hypothesis statement. ... What is the difference between a thesis statement and an hypothesis statement? Online Library. American Public University System. Jun 16, 2014. Web. http ...

  14. Difference Between Thesis and Hypothesis

    A thesis is a statement that is put forward as a premise to be maintained or proved. The main difference between thesis and hypothesis is that thesis is found in all research studies whereas a hypothesis is mainly found in experimental quantitative research studies. This article explains, 1. What is a Thesis? - Definition, Features, Function. 2.

  15. Research Hypothesis In Psychology: Types, & Examples

    A research hypothesis is a testable prediction about the relationship between two or more variables. It is a key component of the scientific method that connects theory to data and guides research. Learn about different types of hypotheses, falsifiability, and how to write a hypothesis.

  16. What is a scientific hypothesis?

    A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. Learn how to formulate, test and reject or modify hypotheses, and the difference between ...

  17. What is a Research Hypothesis: How to Write it, Types, and Examples

    A research hypothesis is a testable statement that proposes a possible explanation to a phenomenon, and it may include a prediction. Learn the characteristics, types, and examples of a good research hypothesis, and how to create one based on the research question and literature review.

  18. What is a hypothesis?

    A hypothesis is a tentative answer to your research question that has not yet been tested. It should be based on existing theories and knowledge, and it should be testable through scientific methods. Learn more about how to write and test hypotheses, and see examples of different types of hypotheses.

  19. Scientific Hypothesis, Model, Theory, and Law

    Learn the difference between hypothesis, model, theory, and law in science. A hypothesis is an educated guess based on observation, a model is a simplified representation of a complex concept, a theory is an accepted explanation that can be disproven, and a law is a generalization of observations that cannot be violated.

  20. This is the Difference Between a Hypothesis and a Theory

    A hypothesis is an assumption made before any research has been done, while a theory is a principle formed to explain the things already shown in data. Learn how to use these terms correctly in scientific and non-scientific contexts, and avoid common misinterpretations of theory.

  21. Problem statement and hypothesis

    Learn how to formulate a problem statement or a hypothesis for your academic assignment. Find out the differences, similarities and tips for each type of problem definition.

  22. Hypothesis Definition & Meaning

    Learn the difference between hypothesis and theory, two terms often confused in scientific and non-scientific contexts. A hypothesis is a tentative assumption made to test its consequences, while a theory is a well-supported principle that explains facts and predicts outcomes.

  23. 8.1: The null and alternative hypotheses

    The Null hypothesis \(\left(H_{O}\right)\) is a statement about the comparisons, e.g., between a sample statistic and the population, or between two treatment groups. The former is referred to as a one-tailed test whereas the latter is called a two-tailed test. The null hypothesis is typically "no statistical difference" between the ...

  24. Step-by-step guide to hypothesis testing in statistics

    Alternative Hypothesis (H1): This is what you want to test. It suggests there is a change or effect. Example: Suppose a company says their new batteries last an average of 500 hours. To check this: Null Hypothesis (H0): The average battery life is 500 hours. Alternative Hypothesis (H1): The average battery life is not 500 hours. 2. Choose the Test

  25. Reevaluating the Neural Noise Hypothesis in Dyslexia: Insights ...

    The neural noise hypothesis of dyslexia posits an imbalance between excitatory and inhibitory (E/I) brain activity as an underlying mechanism of reading difficulties. This study provides the first direct test of this hypothesis using both indirect EEG power spectrum measures in 120 Polish ...

  26. Environmental constraints can explain clutch size differences between

    A formal analysis of this data set revealed no statistical difference between habitats in the effect of egg removal on the total number of eggs that females laid (habitat × treatment group interaction, χ 2 df=1 = 1.366, p = 0.243; Table S2).

  27. Effect of Dietary Enrichment with Hempseed (Cannabis sativa L.) on

    Dietary hempseed (Cannabis sativa L.) reduces blood pressure in adults and animal models of hypertension; however, whether hempseed consumption throughout early life reduces adult blood pressure is not known. This study tested the hypothesis that hempseed enrichment versus a control diet modifies the age-dependent pattern of blood pressure changes in growing female C57BL/6 mice and results in ...