Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Type I & Type II Errors | Differences, Examples, Visualizations

Type I & Type II Errors | Differences, Examples, Visualizations

Published on January 18, 2021 by Pritha Bhandari . Revised on June 22, 2023.

In statistics , a Type I error is a false positive conclusion, while a Type II error is a false negative conclusion.

Making a statistical decision always involves uncertainties, so the risks of making these errors are unavoidable in hypothesis testing .

The probability of making a Type I error is the significance level , or alpha (α), while the probability of making a Type II error is beta (β). These risks can be minimized through careful planning in your study design.

  • Type I error (false positive) : the test result says you have coronavirus, but you actually don’t.
  • Type II error (false negative) : the test result says you don’t have coronavirus, but you actually do.

Table of contents

Error in statistical decision-making, type i error, type ii error, trade-off between type i and type ii errors, is a type i or type ii error worse, other interesting articles, frequently asked questions about type i and ii errors.

Using hypothesis testing, you can make decisions about whether your data support or refute your research predictions with null and alternative hypotheses .

Hypothesis testing starts with the assumption of no difference between groups or no relationship between variables in the population—this is the null hypothesis . It’s always paired with an alternative hypothesis , which is your research prediction of an actual difference between groups or a true relationship between variables .

In this case:

  • The null hypothesis (H 0 ) is that the new drug has no effect on symptoms of the disease.
  • The alternative hypothesis (H 1 ) is that the drug is effective for alleviating symptoms of the disease.

Then , you decide whether the null hypothesis can be rejected based on your data and the results of a statistical test . Since these decisions are based on probabilities, there is always a risk of making the wrong conclusion.

  • If your results show statistical significance , that means they are very unlikely to occur if the null hypothesis is true. In this case, you would reject your null hypothesis. But sometimes, this may actually be a Type I error.
  • If your findings do not show statistical significance, they have a high chance of occurring if the null hypothesis is true. Therefore, you fail to reject your null hypothesis. But sometimes, this may be a Type II error.

Type I and Type II error in statistics

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

type 1 hypothesis testing error

A Type I error means rejecting the null hypothesis when it’s actually true. It means concluding that results are statistically significant when, in reality, they came about purely by chance or because of unrelated factors.

The risk of committing this error is the significance level (alpha or α) you choose. That’s a value that you set at the beginning of your study to assess the statistical probability of obtaining your results ( p value).

The significance level is usually set at 0.05 or 5%. This means that your results only have a 5% chance of occurring, or less, if the null hypothesis is actually true.

If the p value of your test is lower than the significance level, it means your results are statistically significant and consistent with the alternative hypothesis. If your p value is higher than the significance level, then your results are considered statistically non-significant.

To reduce the Type I error probability, you can simply set a lower significance level.

Type I error rate

The null hypothesis distribution curve below shows the probabilities of obtaining all possible results if the study were repeated with new samples and the null hypothesis were true in the population .

At the tail end, the shaded area represents alpha. It’s also called a critical region in statistics.

If your results fall in the critical region of this curve, they are considered statistically significant and the null hypothesis is rejected. However, this is a false positive conclusion, because the null hypothesis is actually true in this case!

Type I error rate

A Type II error means not rejecting the null hypothesis when it’s actually false. This is not quite the same as “accepting” the null hypothesis, because hypothesis testing can only tell you whether to reject the null hypothesis.

Instead, a Type II error means failing to conclude there was an effect when there actually was. In reality, your study may not have had enough statistical power to detect an effect of a certain size.

Power is the extent to which a test can correctly detect a real effect when there is one. A power level of 80% or higher is usually considered acceptable.

The risk of a Type II error is inversely related to the statistical power of a study. The higher the statistical power, the lower the probability of making a Type II error.

Statistical power is determined by:

  • Size of the effect : Larger effects are more easily detected.
  • Measurement error : Systematic and random errors in recorded data reduce power.
  • Sample size : Larger samples reduce sampling error and increase power.
  • Significance level : Increasing the significance level increases power.

To (indirectly) reduce the risk of a Type II error, you can increase the sample size or the significance level.

Type II error rate

The alternative hypothesis distribution curve below shows the probabilities of obtaining all possible results if the study were repeated with new samples and the alternative hypothesis were true in the population .

The Type II error rate is beta (β), represented by the shaded area on the left side. The remaining area under the curve represents statistical power, which is 1 – β.

Increasing the statistical power of your test directly decreases the risk of making a Type II error.

Type II error rate

The Type I and Type II error rates influence each other. That’s because the significance level (the Type I error rate) affects statistical power, which is inversely related to the Type II error rate.

This means there’s an important tradeoff between Type I and Type II errors:

  • Setting a lower significance level decreases a Type I error risk, but increases a Type II error risk.
  • Increasing the power of a test decreases a Type II error risk, but increases a Type I error risk.

This trade-off is visualized in the graph below. It shows two curves:

  • The null hypothesis distribution shows all possible results you’d obtain if the null hypothesis is true. The correct conclusion for any point on this distribution means not rejecting the null hypothesis.
  • The alternative hypothesis distribution shows all possible results you’d obtain if the alternative hypothesis is true. The correct conclusion for any point on this distribution means rejecting the null hypothesis.

Type I and Type II errors occur where these two distributions overlap. The blue shaded area represents alpha, the Type I error rate, and the green shaded area represents beta, the Type II error rate.

By setting the Type I error rate, you indirectly influence the size of the Type II error rate as well.

Type I and Type II error

It’s important to strike a balance between the risks of making Type I and Type II errors. Reducing the alpha always comes at the cost of increasing beta, and vice versa .

For statisticians, a Type I error is usually worse. In practical terms, however, either type of error could be worse depending on your research context.

A Type I error means mistakenly going against the main statistical assumption of a null hypothesis. This may lead to new policies, practices or treatments that are inadequate or a waste of resources.

In contrast, a Type II error means failing to reject a null hypothesis. It may only result in missed opportunities to innovate, but these can also have important practical consequences.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient
  • Null hypothesis

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

In statistics, a Type I error means rejecting the null hypothesis when it’s actually true, while a Type II error means failing to reject the null hypothesis when it’s actually false.

The risk of making a Type I error is the significance level (or alpha) that you choose. That’s a value that you set at the beginning of your study to assess the statistical probability of obtaining your results ( p value ).

To reduce the Type I error probability, you can set a lower significance level.

The risk of making a Type II error is inversely related to the statistical power of a test. Power is the extent to which a test can correctly detect a real effect when there is one.

To (indirectly) reduce the risk of a Type II error, you can increase the sample size or the significance level to increase statistical power.

Statistical significance is a term used by researchers to state that it is unlikely their observations could have occurred under the null hypothesis of a statistical test . Significance is usually denoted by a p -value , or probability value.

Statistical significance is arbitrary – it depends on the threshold, or alpha value, chosen by the researcher. The most common threshold is p < 0.05, which means that the data is likely to occur less than 5% of the time under the null hypothesis .

When the p -value falls below the chosen alpha value, then we say the result of the test is statistically significant.

In statistics, power refers to the likelihood of a hypothesis test detecting a true effect if there is one. A statistically powerful test is more likely to reject a false negative (a Type II error).

If you don’t ensure enough power in your study, you may not be able to detect a statistically significant result even when it has practical significance. Your study might not have the ability to answer your research question.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 22). Type I & Type II Errors | Differences, Examples, Visualizations. Scribbr. Retrieved September 16, 2024, from https://www.scribbr.com/statistics/type-i-and-type-ii-errors/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, an easy introduction to statistical significance (with examples), understanding p values | definition and examples, statistical power and why it matters | a simple introduction, what is your plagiarism score.

  • Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Type 1 Error Overview & Example

By Jim Frost Leave a Comment

What is a Type 1 Error?

A type 1 error (AKA Type I error) occurs when you reject a true null hypothesis in a hypothesis test. In other words, a statistically significant test result indicates that a population effect exists when it does not. A type 1 error is a false positive because the test detects an effect in the sample that doesn’t exist in the population.

Caution! Type 1 errors can occur in hypothesis testing.

By rejecting a  true  null hypothesis, you incorrectly conclude that the effect exists when it doesn’t . Of course, you don’t know that you’re committing an error at the time. You’re just following the results of your hypothesis test.

Type 1 errors can have serious consequences. When testing a new medication, a false positive could mean putting a useless drug on the market. Understanding and managing these errors is essential for reliable statistical conclusions.

Related post : Hypothesis Testing Overview

Type 1 Error Example

Let’s take that technical information and bring it to life with an example of a type 1 error in action. For the study in this example, we’ll assume we know that the effect doesn’t exist. You wouldn’t know that in the real world, which is why you conduct the study!

Suppose we’re testing a new medicine that is completely ineffective. We perform a study, collect the data, and perform the hypothesis test.

The hypotheses for this test are the following:

  • Null : The medicine has no effect in the population
  • Alternative : The medicine is effective in the population.

The analysis produces a p-value of 0.03, less than our alpha level of 0.05. Our study is statistically significant . Therefore, we reject the null and conclude the medicine is effective.

Unfortunately, these results are incorrect because the medicine is ineffective. The statistically significant results make us think the medicine is effective when it isn’t. It’s a false positive. A type 1 error has occurred and we don’t even know it!

Learn more about the Null Hypothesis .

Why Do They Occur?

Hypothesis tests use sample data to infer the properties of populations. You gain incredible benefits by using random samples because it is usually impossible to evaluate an entire population.

Unfortunately, using samples introduces potential problems, including Type 1 errors. Random samples tend to reflect the population from which they’re drawn. However, they can occasionally misrepresent the population enough to cause false positives.

Type 1 errors sneak into our analysis due to chance during random sampling. Even when we do everything right – following assumptions and using correct procedures – randomness in data collection can lead to misleading results.

Imagine rolling a die. Sometimes, purely by chance, you get more sixes than expected. Similarly, randomness can produce unusual samples that misrepresent the population.

In short, the luck of the draw can cause Type 1 errors (false positives) to occur.

Learn more about Representative Samples and Random Sampling .

Probability of a Type 1 Error

While we don’t know when studies produce false positive results, we do know their rate of occurrence. The probability of making a Type 1 error is denoted by the Greek letter alpha (α), which is the significance level of the test. By choosing your significance level, you’re setting the false positive rate.

A standard value for α is 0.05. This significance level produces a 5% chance of rejecting a true null hypothesis.

A critical benefit for hypothesis testing is that when the null hypothesis is true, the probability of a Type 1 error (false positive) is low. This fact helps you trust statistically significant results.

Related posts : Significance Level and How Hypothesis Tests Work: Alpha & P-values .

Minimizing False Positives

There’s no way to eliminate Type 1 errors entirely, but you can reduce them by lowering your significance level (e.g., from 0.05 to 0.01). However, lower alphas also lessen the probability of detecting an effect if one exists.

It’s a balancing act. Set α too high, and you risk more false positives. Set it too low, and you might miss real effects ( Type 2 errors or false negatives ). Choosing the right α depends on the context and consequences of your test.

In hypothesis testing, understanding Type 1 errors is vital. They represent a false positive, where we think we’ve found something significant when we haven’t. By carefully choosing our significance level, we can reduce the risk of these errors and make more accurate statistical decisions.

Compare and contrast Type I vs. Type II Errors .

Acosta, Griselda; Smith, Eric; and Kreinovich, Vladik, “ Why Area Under the Curve in Hypothesis Testing? ” (2019). Departmental Technical Reports (CS) . 1360.

Share this:

type 1 hypothesis testing error

Reader Interactions

Comments and questions cancel reply.

Type 1 and Type 2 Errors in Statistics

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

On This Page:

A statistically significant result cannot prove that a research hypothesis is correct (which implies 100% certainty). Because a p -value is based on probabilities, there is always a chance of making an incorrect conclusion regarding accepting or rejecting the null hypothesis ( H 0 ).

Anytime we make a decision using statistics, there are four possible outcomes, with two representing correct decisions and two representing errors.

type 1 and type 2 errors

The chances of committing these two types of errors are inversely proportional: that is, decreasing type I error rate increases type II error rate and vice versa.

As the significance level (α) increases, it becomes easier to reject the null hypothesis, decreasing the chance of missing a real effect (Type II error, β). If the significance level (α) goes down, it becomes harder to reject the null hypothesis , increasing the chance of missing an effect while reducing the risk of falsely finding one (Type I error).

Type I error 

A type 1 error is also known as a false positive and occurs when a researcher incorrectly rejects a true null hypothesis. Simply put, it’s a false alarm.

This means that you report that your findings are significant when they have occurred by chance.

The probability of making a type 1 error is represented by your alpha level (α), the p- value below which you reject the null hypothesis.

A p -value of 0.05 indicates that you are willing to accept a 5% chance of getting the observed data (or something more extreme) when the null hypothesis is true.

You can reduce your risk of committing a type 1 error by setting a lower alpha level (like α = 0.01). For example, a p-value of 0.01 would mean there is a 1% chance of committing a Type I error.

However, using a lower value for alpha means that you will be less likely to detect a true difference if one really exists (thus risking a type II error).

Scenario: Drug Efficacy Study

Imagine a pharmaceutical company is testing a new drug, named “MediCure”, to determine if it’s more effective than a placebo at reducing fever. They experimented with two groups: one receives MediCure, and the other received a placebo.

  • Null Hypothesis (H0) : MediCure is no more effective at reducing fever than the placebo.
  • Alternative Hypothesis (H1) : MediCure is more effective at reducing fever than the placebo.

After conducting the study and analyzing the results, the researchers found a p-value of 0.04.

If they use an alpha (α) level of 0.05, this p-value is considered statistically significant, leading them to reject the null hypothesis and conclude that MediCure is more effective than the placebo.

However, MediCure has no actual effect, and the observed difference was due to random variation or some other confounding factor. In this case, the researchers have incorrectly rejected a true null hypothesis.

Error : The researchers have made a Type 1 error by concluding that MediCure is more effective when it isn’t.

Implications

Resource Allocation : Making a Type I error can lead to wastage of resources. If a business believes a new strategy is effective when it’s not (based on a Type I error), they might allocate significant financial and human resources toward that ineffective strategy.

Unnecessary Interventions : In medical trials, a Type I error might lead to the belief that a new treatment is effective when it isn’t. As a result, patients might undergo unnecessary treatments, risking potential side effects without any benefit.

Reputation and Credibility : For researchers, making repeated Type I errors can harm their professional reputation. If they frequently claim groundbreaking results that are later refuted, their credibility in the scientific community might diminish.

Type II error

A type 2 error (or false negative) happens when you accept the null hypothesis when it should actually be rejected.

Here, a researcher concludes there is not a significant effect when actually there really is.

The probability of making a type II error is called Beta (β), which is related to the power of the statistical test (power = 1- β). You can decrease your risk of committing a type II error by ensuring your test has enough power.

You can do this by ensuring your sample size is large enough to detect a practical difference when one truly exists.

Scenario: Efficacy of a New Teaching Method

Educational psychologists are investigating the potential benefits of a new interactive teaching method, named “EduInteract”, which utilizes virtual reality (VR) technology to teach history to middle school students.

They hypothesize that this method will lead to better retention and understanding compared to the traditional textbook-based approach.

  • Null Hypothesis (H0) : The EduInteract VR teaching method does not result in significantly better retention and understanding of history content than the traditional textbook method.
  • Alternative Hypothesis (H1) : The EduInteract VR teaching method results in significantly better retention and understanding of history content than the traditional textbook method.

The researchers designed an experiment where one group of students learns a history module using the EduInteract VR method, while a control group learns the same module using a traditional textbook.

After a week, the student’s retention and understanding are tested using a standardized assessment.

Upon analyzing the results, the psychologists found a p-value of 0.06. Using an alpha (α) level of 0.05, this p-value isn’t statistically significant.

Therefore, they fail to reject the null hypothesis and conclude that the EduInteract VR method isn’t more effective than the traditional textbook approach.

However, let’s assume that in the real world, the EduInteract VR truly enhances retention and understanding, but the study failed to detect this benefit due to reasons like small sample size, variability in students’ prior knowledge, or perhaps the assessment wasn’t sensitive enough to detect the nuances of VR-based learning.

Error : By concluding that the EduInteract VR method isn’t more effective than the traditional method when it is, the researchers have made a Type 2 error.

This could prevent schools from adopting a potentially superior teaching method that might benefit students’ learning experiences.

Missed Opportunities : A Type II error can lead to missed opportunities for improvement or innovation. For example, in education, if a more effective teaching method is overlooked because of a Type II error, students might miss out on a better learning experience.

Potential Risks : In healthcare, a Type II error might mean overlooking a harmful side effect of a medication because the research didn’t detect its harmful impacts. As a result, patients might continue using a harmful treatment.

Stagnation : In the business world, making a Type II error can result in continued investment in outdated or less efficient methods. This can lead to stagnation and the inability to compete effectively in the marketplace.

How do Type I and Type II errors relate to psychological research and experiments?

Type I errors are like false alarms, while Type II errors are like missed opportunities. Both errors can impact the validity and reliability of psychological findings, so researchers strive to minimize them to draw accurate conclusions from their studies.

How does sample size influence the likelihood of Type I and Type II errors in psychological research?

Sample size in psychological research influences the likelihood of Type I and Type II errors. A larger sample size reduces the chances of Type I errors, which means researchers are less likely to mistakenly find a significant effect when there isn’t one.

A larger sample size also increases the chances of detecting true effects, reducing the likelihood of Type II errors.

Are there any ethical implications associated with Type I and Type II errors in psychological research?

Yes, there are ethical implications associated with Type I and Type II errors in psychological research.

Type I errors may lead to false positive findings, resulting in misleading conclusions and potentially wasting resources on ineffective interventions. This can harm individuals who are falsely diagnosed or receive unnecessary treatments.

Type II errors, on the other hand, may result in missed opportunities to identify important effects or relationships, leading to a lack of appropriate interventions or support. This can also have negative consequences for individuals who genuinely require assistance.

Therefore, minimizing these errors is crucial for ethical research and ensuring the well-being of participants.

Further Information

  • Publication manual of the American Psychological Association
  • Statistics for Psychology Book Download

Print Friendly, PDF & Email

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

6.1 - type i and type ii errors.

When conducting a hypothesis test there are two possible decisions: reject the null hypothesis or fail to reject the null hypothesis. You should remember though, hypothesis testing uses data from a sample to make an inference about a population. When conducting a hypothesis test we do not know the population parameters. In most cases, we don't know if our inference is correct or incorrect.

When we reject the null hypothesis there are two possibilities. There could really be a difference in the population, in which case we made a correct decision. Or, it is possible that there is not a difference in the population (i.e., \(H_0\) is true) but our sample was different from the hypothesized value due to random sampling variation. In that case we made an error. This is known as a Type I error.

When we fail to reject the null hypothesis there are also two possibilities. If the null hypothesis is really true, and there is not a difference in the population, then we made the correct decision. If there is a difference in the population, and we failed to reject it, then we made a Type II error.

Rejecting \(H_0\) when \(H_0\) is really true, denoted by \(\alpha\) ("alpha") and commonly set at .05

     \(\alpha=P(Type\;I\;error)\)

Failing to reject \(H_0\) when \(H_0\) is really false, denoted by \(\beta\) ("beta")

     \(\beta=P(Type\;II\;error)\)

Decision Reality
\(H_0\) is true \(H_0\) is false
Reject \(H_0\), (conclude \(H_a\)) Type I error Correct decision
Fail to reject \(H_0\) Correct decision Type II error

Example: Trial Section  

A man goes to trial where he is being tried for the murder of his wife.

We can put it in a hypothesis testing framework. The hypotheses being tested are:

  • \(H_0\) : Not Guilty
  • \(H_a\) : Guilty

Type I error  is committed if we reject \(H_0\) when it is true. In other words, did not kill his wife but was found guilty and is punished for a crime he did not really commit.

Type II error  is committed if we fail to reject \(H_0\) when it is false. In other words, if the man did kill his wife but was found not guilty and was not punished.

Example: Culinary Arts Study Section  

Asparagus

A group of culinary arts students is comparing two methods for preparing asparagus: traditional steaming and a new frying method. They want to know if patrons of their school restaurant prefer their new frying method over the traditional steaming method. A sample of patrons are given asparagus prepared using each method and asked to select their preference. A statistical analysis is performed to determine if more than 50% of participants prefer the new frying method:

  • \(H_{0}: p = .50\)
  • \(H_{a}: p>.50\)

Type I error  occurs if they reject the null hypothesis and conclude that their new frying method is preferred when in reality is it not. This may occur if, by random sampling error, they happen to get a sample that prefers the new frying method more than the overall population does. If this does occur, the consequence is that the students will have an incorrect belief that their new method of frying asparagus is superior to the traditional method of steaming.

Type II error  occurs if they fail to reject the null hypothesis and conclude that their new method is not superior when in reality it is. If this does occur, the consequence is that the students will have an incorrect belief that their new method is not superior to the traditional method when in reality it is.

  • Search Search Please fill out this field.

What Is a Type I Error?

  • How It Works

The Bottom Line

  • Business Leaders
  • Math and Statistics

Type 1 Error: Definition, False Positives, and Examples

type 1 hypothesis testing error

Investopedia / Julie Bang

In simple terms, a type I error is a false positive result. If a person was diagnosed with a medical condition that they do not have, this would be an example of a type I error. Similarly, if a person was convicted of a crime, a type I error occurs if they were innocent.

Within the field of statistics, a type 1 error is when the null hypothesis — the assumption that no relationship exists between different variables—is incorrectly rejected. In the event of a type I error, the results are flawed if a relationship is found between the given variables when in fact no relationship is present.

Key Takeaways

  • A type I error is a false positive leading to an incorrect rejection of the null hypothesis.
  • The null hypothesis assumes no cause-and-effect relationship between the tested item and the stimuli applied during the test.
  • A false positive can occur if something other than the stimuli causes the outcome of the test.

How Does a Type I Error Occur?

A type I error can result across a wide range of scenarios, from medical diagnosis to statistical research, particularly when there is a greater degree of uncertainty.

In statistical research, hypothesis testing is designed to provide evidence that the hypothesis is supported by the data being tested. To do so, it starts with a null hypothesis, which is the assumption that there is no statistical significance between two data sets, variables, or populations . In many cases, a researcher generally tries to disprove the null hypothesis.

For example, consider a null hypothesis that states that ethical investment strategies perform no better than the S&P 500 . To analyze this, an analyst would take samples of data and test the historical performance of ethical investment strategies to determine if they outperformed the S&P 500. If they conclude that ethical investment strategies outperform the S&P 500, when in fact they perform no better than the index, the null hypothesis would be rejected and a type I error would occur. These wrongful conclusions may have resulted from unrelated factors or incorrect data analysis.

Often, researchers will determine a probability of achieving their results, called the significance level. Typically, the significance level is set at 5%, meaning the likelihood of obtaining your result is 5% in the case that the null hypothesis is valid. Going further, by reducing the significance level, it reduces the odds of a type I error from occurring.

Ideally, a null hypothesis should never be rejected if it's found to be true. However, there are situations when errors can occur.

Examples of Type I Errors

Let's look at a couple of hypothetical examples to show how type I errors occur.

Criminal Trials

Type I errors commonly occur in criminal trials, where juries are required to come up with a verdict of either innocent or guilty. In this case, the null hypothesis is that the person is innocent, while the alternative is guilty. A jury may come up with a type I error if the members find that the person is found guilty and is sent to jail, despite actually being innocent.

Medical Testing

In medical testing, a type I error would cause the appearance that a treatment for a disease has the effect of reducing the severity of the disease when, in fact, it does not. When a new medicine is being tested, the null hypothesis will be that the medicine does not affect the progression of the disease.

Let's say a lab is researching a new cancer drug . Their null hypothesis might be that the drug does not affect the growth rate of cancer cells.

After applying the drug to the cancer cells, the cancer cells stop growing. This would cause the researchers to reject their null hypothesis that the drug would have no effect. If the drug caused the growth stoppage, the conclusion to reject the null, in this case, would be correct.

However, if something else during the test caused the growth stoppage instead of the administered drug, this would be an example of an incorrect rejection of the null hypothesis (i.e., a type I error).

How Does a Type I Error Arise?

A type I error occurs when the null hypothesis, which is the belief that there is no statistical significance or effect between the data sets considered in the hypothesis, is mistakenly rejected. The type I error should never be rejected even though it's accurate. It is also known as a false positive result.

What Is the Difference Between a Type I and Type II Error?

Type I and type II errors occur during statistical hypothesis testing. While the type I error (a false positive) rejects a null hypothesis when it is, in fact, correct, the type II error (a false negative) fails to reject a false null hypothesis. For example, a type I error would convict someone of a crime when they are actually innocent. A type II error would acquit a guilty individual when they are guilty of a crime.

What Is a Null Hypothesis?

A null hypothesis occurs in statistical hypothesis testing. It states that no relationship exists between two data sets or populations. When a null hypothesis is accurate and rejected, the result is a false positive or a type I error. When it is false and fails to be rejected, a false negative occurs. This is also referred to as a type II error.

What's the Difference Between a Type I Error and a False Positive?

A type I error is often called a false positive. This occurs when the null hypothesis is rejected even though it's correct. The rejection takes place because of the assumption that there is no relationship between the data sets and the stimuli. As such, the outcome is assumed to be incorrect.

Type I errors, which incorrectly reject the null hypothesis when it is in fact true, are present in many areas, such as making investment decisions or deciding the fate of a person in a criminal trial.

Most commonly, the term is used in statistical research that applies hypothetical testing. In this method, data sets are used to either accept or determine a specific outcome using a null hypothesis. Although we often don't realize it, we use hypothesis testing in our everyday lives to determine whether the results are valid or an outcome is true.

type 1 hypothesis testing error

  • Terms of Service
  • Editorial Policy
  • Privacy Policy

Advisory boards aren’t only for executives. Join the LogRocket Content Advisory Board today →

LogRocket blog logo

  • Product Management
  • Solve User-Reported Issues
  • Find Issues Faster
  • Optimize Conversion and Adoption

A guide to type 1 errors: Examples and best practices

type 1 hypothesis testing error

When managing products, product managers often use statistical testing to evaluate the impact of new features, user interface adjustments, or other product modifications. Statistical testing provides evidence to help product managers make informed decisions based on data, indicating whether a change has significantly affected user behavior, engagement, or other relevant metrics.

type 1 hypothesis testing error

However, statistical tests aren’t always accurate, and there is a risk of type 1 errors, also known as “false positives,” in statistics. A type 1 error occurs when a null hypothesis is wrongly rejected, even if it’s true.

PMs must consider the risk of type 1 errors when conducting statistical tests. If the significance level is set too high or multiple tests are performed without adjusting for multiple comparisons, the chance of false positives increases. This could lead to incorrect conclusions and waste resources on changes that don’t significantly affect the product.

In this article, you will learn what a type 1 error is, the factors that contribute to one, and best practices for minimizing the risks associated with it.

What is a type 1 error?

A type 1 error, also known as a “false positive,” occurs when you mistakenly reject a null hypothesis as true. The null hypothesis assumes no significant relationship or effect between variables, while the alternative hypothesis suggests the opposite.

For example, a product manager wants to determine if a new call to action (CTA) button implementation on a web app leads to a statistically significant increase in new customer acquisition.

The null hypothesis (H₀) states no significant effect on acquiring new customers on a web app after implementing a new feature, and an alternative hypothesis (H₁) suggests a significant increase in customer acquisition. To confirm their hypothesis, the product managers gather information on user acquisition metrics, like the daily number of active users, repeat customers, click through rate (CTR), churn rate, and conversion rates, both before and after the feature’s implementation.

After collecting data on the acquisition metrics from two different periods and running a statistical evaluation using a t-test or chi-square test, the PM * * falsely believes that the new CTA button is effective based on the sample data. In this case, a type 1 error occurs as he rejected the H₀ even though it has no impact on the population as a whole.

A PM must carefully interpret data, control the significance level, and perform appropriate sample size calculations to avoid this. Product managers, researchers, and practitioners must also take these steps to reduce the likelihood of making type 1 errors:

Steps To Reject

Type 1 vs. type 2 errors

Before comparing type 1 and type 2 errors, let’s first focus on type 2 errors . Unlike type 1 errors, type 2 errors occur when an effect is present but not detected. This means a null hypothesis (Ho) is not rejected even though it is false.

In product management, type 1 errors lead to incorrect decisions, wasted resources, and unsuccessful products, while type 2 errors result in missed opportunities, stunted growth, and suboptimal decision-making. For a comprehensive comparison between type 1 and type 2 errors with product development and management, please refer to the following:

Type 1 Vs. Type 2 Errors

To understand the comparison table above, it’s necessary to grasp the relationship between type 1 and type 2 errors. This is where the concept of statistical power comes in handy.

Statistical power refers to the likelihood of accurately rejecting a null hypothesis( Ho) when it’s false. This likelihood is influenced by factors such as sample size, effect size, and the chosen level of significance, alpha ( α ).

type 1 hypothesis testing error

Over 200k developers and product managers use LogRocket to create better digital experiences

type 1 hypothesis testing error

With hypothesis testing, there’s often a trade-off between type 1 and type 2 errors. By setting a more stringent significance level with a lower α, you can decrease the chance of type 1 errors, but increase the chance of Type 2 errors.

On the other hand, by setting a less stringent significance level with a higher α, we can decrease the chance of type 2 errors, but increase the chance of type 1 errors.

It’s crucial to consider the consequences of each type of error in the specific context of the study or decision being made. The importance of avoiding one type of error over the other will depend on the field of study, the costs associated with the errors, and the goals of the analysis.

Factors that contribute to type 1 errors

Type 1 errors can be caused by a range of different factors, but the following are some of the most common reasons:

Insufficient sample size

Multiple comparisons, publication bias, inadequate control groups or comparison conditions, human judgment and bias.

When sample sizes are too small, there is a greater chance of type 1 errors. This is because random variation may affect the observed results rather than an actual effect. To avoid this, studies should be conducted with larger sample sizes, which increases statistical power and decreases the risk of type 1 errors.

When multiple statistical tests or comparisons are conducted simultaneously without appropriate adjustments, the likelihood of encountering false positives increases. Conducting numerous tests without correcting for multiple comparisons can lead to an inflated type 1 error rate.

Techniques like Bonferroni correction or false discovery rate control should be employed to address this issue.

Publication bias is when studies with statistically significant results are more likely to be published than those with non-significant or null findings. This can lead to misleading perceptions of the true effect sizes or relationships. To mitigate this bias, meta-analyses or systematic reviews consider all available evidence, including unpublished studies.

More great articles from LogRocket:

  • How to implement issue management to improve your product
  • 8 ways to reduce cycle time and build a better product
  • What is a PERT chart and how to make one
  • Discover how to use behavioral analytics to create a great product experience
  • Explore six tried and true product management frameworks you should know
  • Advisory boards aren’t just for executives. Join LogRocket’s Content Advisory Board. You’ll help inform the type of content we create and get access to exclusive meetups, social accreditation, and swag.

When conducting experimental studies, selecting the wrong control group or comparison condition can lead to inaccurate results. Without a suitable control group, distinguishing the actual impact of the intervention from other variables becomes difficult, which raises the likelihood of making type 1 errors.

When researchers allow their personal opinions or assumptions to influence their analysis, they can make type 1 errors. This is especially true when researchers favor results that align with their expectations, known as confirmation bias.

To reduce the chances of type 1 errors, it’s crucial to consider these factors and utilize appropriate research design, statistical analysis methods, and reporting protocols.

Type 1 error examples

In software product management, minimizing type 1 errors is important. To help you better understand, here are some examples of type 1 errors from product management in the context of null hypothesis (Ho) validation, alongside strategies to mitigate them:

False positive impact of a new feature

False positive correlation between metrics, false positive for performance improvement, overstating the effectiveness of an algorithm.

Here, the assumption is that specific features of your software would greatly improve user involvement. To test this hypothesis, a PM conducts experiments and observes increased user involvement. However, it later becomes clear that the boost was not solely due to the feature, but also other factors, such as a simultaneous marketing campaign.

This results in a type 1 error.

Experiments focusing solely on the analyzed feature are important to avoid mistakes. One effective method is A/B testing , where you randomly divide users into two groups — one group with the new feature and the other without. By comparing the outcomes of both groups, you can accurately attribute any observed effects to the feature being tested.

In this case, a PM believes there is a direct connection between the number of bug fixes and customer satisfaction scores (CSAT) . However, after examining the data, you find a correlation that appears to support your hypothesis that could just be coincidental.

This leads to a Type 1 error, where bug fixes have no direct impact on CSAT.

It’s important to use rigorous statistical analysis techniques to reduce errors. This includes employing appropriate statistical tests like correlation coefficients and evaluating the statistical significance of the correlations observed.

Another potential instance comes when a hypothesis states that the performance of the software can be greatly enhanced by implementing a particular optimization technique. However, if the optimization technique is implemented and there is no noticeable improvement in the software’s performance, a type 1 error has occured.

To ensure the successful implementation of optimization techniques, it is important to conduct thorough benchmarking and profiling beforehand. This will help identify any existing bottlenecks.

A type 1 error occurs when an algorithm claims to predict user behavior or outcomes with high accuracy and then often falls short in real-life situations.

To ensure the effectiveness of algorithms, conduct extensive testing in real-world settings, using diverse datasets and consider various edge cases. Additionally, evaluate the algorithm’s performance against relevant metrics and benchmarks before making any bold claims.

Designing rigorous experiments, using proper statistical analysis techniques, controlling for confounding variables, and incorporating qualitative data are important to reduce the risk of type 1 error.

Best practices to minimize type 1 errors

To reduce the chances of type 1 errors, product managers should take the following measures:

  • Careful experiment design — To increase the reliability of results, it is important to prioritize well-designed experiments, clear hypotheses, and have appropriate sample sizes
  • Set a significance level — The significance level determines the threshold for rejecting the null hypothesis. The most commonly used values are 0.05 or 0.01. These values represent a 5 percent or 1 percent chance of making a type 1 error. Opting for a lower significance level can decrease the probability of mistakenly rejecting the null hypothesis
  • Correcting for multiple comparisons — To control the overall type 1 error rate, statistical techniques like Bonferroni correction or the false discovery rate (FDR) can be helpful when performing multiple tests simultaneously, such as testing several features or variants
  • Replication and validation — To ensure accuracy and minimize false positives, it’s important to repeat important findings in future experiments
  • Use appropriate sample sizes — Sufficient sample size is important for accurate results. Determine the required size of the sample based on effect size, desired power, and significance level. A suitable sample size improves the chances of detecting actual effects and reduces type 2 errors

Product managers must grasp the importance of type 1 errors in statistical testing. By recognizing the possibility of false positives, you can make better evidence-based decisions and avoid wasting resources on changes that do not truly benefit the product or its users. Employing appropriate statistical techniques, considering effect sizes, replicating findings, and conducting rigorous experiments can help mitigate the risk of type 1 errors and ensure reliable decision-making in product management.

Featured image source: IconScout

LogRocket generates product insights that lead to meaningful action

Get your teams on the same page — try LogRocket today.

Share this:

  • Click to share on Twitter (Opens in new window)
  • Click to share on Reddit (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • #product analytics
  • #tools and resources

type 1 hypothesis testing error

Stop guessing about your digital experience with LogRocket

Recent posts:.

Understanding Subscriber Acquisition Cost

Understanding subscriber acquisition cost

Subscriber acquisition cost (SAC) refers to the total expense incurred by the business to acquire a new customer or subscriber.

type 1 hypothesis testing error

How simplifying our sales funnel led to a 30 percent lift in conversion to paid users

Although we did a good job moving people to the checkout page, we had problems converting checkout visitors to paying customers.

type 1 hypothesis testing error

Will ‘founder mode’ take the product management world by storm?

What exactly is founder mode, and is it really better than manager mode? Let’s discuss what this phenomenon could mean for the PM world.

type 1 hypothesis testing error

A guide to chaos engineering

Chaos engineering is the practice of deliberately introducing failures into a system to test its resilience and identify hidden weaknesses.

type 1 hypothesis testing error

Leave a Reply Cancel reply

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

The PMC website is updating on October 15, 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Restor Dent Endod
  • v.40(3); 2015 Aug

Logo of rde

Statistical notes for clinical researchers: Type I and type II errors in statistical decision

Hae-young kim.

Department of Health Policy and Management, College of Health Science, and Department of Public Health Sciences, Graduate School, Korea University, Seoul, Korea.

Statistical inference is a procedure that we try to make a decision about a population by using information from a sample which is a part of it. In modern statistics it is assumed that we never know about a population, and there is always a possibility to make errors. Theoretically a sample statistic may have values in a wide range because we may select a variety of different samples, which is called a sampling variation. To get practically meaningful inference we preset a certain level of error. In statistical inference we presume two types of error, type I and type II errors.

Null hypothesis and alternative hypothesis

The first step of statistical testing is the setting of hypotheses. When comparing multiple group means we usually set a null hypothesis. For example, "There is no true mean difference," is a general statement or a default position. The other side is an alternative hypothesis such as "There is a true mean difference." Often the null hypothesis is denoted as H 0 and the alternative hypothesis as H 1 or H a . To test a hypothesis, we collect data and measure how much the data support or contradict the null hypothesis. If the measured results are similar to or only slightly different from the condition stated by the null hypothesis, we do not reject and accept H 0 . However, if the dataset shows a big and significant difference from the condition stated by the null hypothesis, we regard that there is enough evidence that the null hypothesis is not true and reject H 0 . When a null hypothesis is rejected, the alternative hypothesis is adopted.

Type I and type II errors

As we assume that we never directly know the information of the population, we never know whether the statistical decision is right or wrong. Actually, the H 0 may be right or wrong and we could make a decision of the acceptance or the rejection of H 0 . In a situation of statistical decision, there may be four different occasions as presented in Table 1 . Two situations lead correct conclusions that true H 0 is accepted and false H 0 is rejected. However, the others are two incorrect erroneous situations that false H 0 is accepted and true H 0 is rejected. A Type I error or alpha (α) error refers to an erroneous rejection of true H 0 . Conversely, a Type II error or beta (β) error refers to an erroneous acceptance of false H 0 .

Conclusion based on dataTruth
H TrueH False
Reject H Type I error (α)Correct conclusion (Power = 1 - β)
Fail to reject H Correct conclusion (1 - α)Type II error (β)

Making some level of error is unavoidable because fundamental uncertainty lies in a statistical inference procedure. As allowing errors is basically harmful, we need to control or limit the maximum level of errors. Which type of error is more risky between type I and type II errors? Traditionally, committing type I error has been considered more risky, and thus more strict control of type I error has been performed in statistical inference.

When we have interest in the null hypothesis only, we may think about type I error only. Let's consider a situation that someone develops a new method and insists that it is more efficient than conventional methods but the new method is actually not more efficient. The truth is H 0 that says "The effects of conventional and newly developed methods are equal." Let's suppose the statistical test results support the efficiency of the new method, which is an erroneous conclusion that the true H 0 is rejected (type I error). According to the conclusion, we consider adopting the newly developed method and making effort to construct a new production system. The erroneous statistical inference with type I error would result in an unnecessary effort and vain investment for nothing better. Otherwise, if the statistical conclusion was made correctly that the conventional and newly developed methods were equal, then we could comfortably stay with the familiar conventional method. Therefore, type I error has been strictly controlled to avoid such useless effort for an inefficient change to adopt new things.

In other example, let's think that we are interested in a safety issue. Someone developed a new method which is actually safer compared to the conventional method. In this situation, null hypothesis states that "Degrees of safety of both methods are equal", when the alternative hypothesis that "The new method is safer than conventional method" is true. Let's suppose that we erroneously accept the null hypothesis (type II error) as the result of statistical inference. We erroneously conclude equal safety and we stay on the less safe conventional environment and have to be exposed to risks continuously. If the risk is a serious one, we would stay in a danger because of the erroneous conclusion with type II error. Therefore, not only type I error but also type II error need to be controlled.

Schematic example of type I and type II errors

Figure 1 shows a schematic example of relative sampling distributions under a null hypothesis (H 0 ) and an alternative hypothesis (H 1 ). Let's suppose they are two sampling distributions of sample means ( X ). H 0 states that sample means are normally distributed with population mean zero. H 1 states the different population mean of 3 under the same shape of sampling distribution. For simplicity, let's assume the standard error of two distributions is one. Therefore, the sampling distribution under H 0 is assumed as the standard normal distribution in this example. In statistical testing on H 0 with an alpha level 0.05, the critical values are set at ± 2 (or exactly 1.96). If the observed sample mean from the dataset lies within ± 2, then we accept H 0 , because we don't have enough evidence to deny H 0 . Or, if the observed sample mean lies beyond the range, we reject H 0 and adopt H 1 . In this example we can say that the probability of alpha error (two-sided) is set at 0.05, because the area beyond ± 2 is 0.05, which is the probability of rejecting the true H 0 . As seen in Figure 1 , extreme values larger than absolute 2 can appear under H 0 with the standard normal distribution ranging to infinity. However, we practically decide to reject H 0 , because the extreme values are too different from the assumed mean, zero. Though the decision includes a probability of error of 0.05, we allow the risk of error because the difference is considered sufficiently big to reach a reasonable conclusion that the null hypothesis is false. As we never know the truth whether the sample dataset we have is from the population H 0 or H 1 , we can make decision only based on the value we observe from the sample data.

An external file that holds a picture, illustration, etc.
Object name is rde-40-249-g001.jpg

Type II error is shown as the area lower than 2 under the distribution of H 1 . The amount of type II error can be calculated only when the alternative hypothesis suggest a definite value. In Figure 1 , a definite mean value of 3 is used in the alternative hypothesis. The critical value 2 is one standard error (= 1) smaller than mean 3 and is standardized to z = - 1 = 2 - 3 1 in a standard normal distribution. The area less than z = -1 is 0.16 (yellow area) in standard normal distribution. Therefore, the amount of type II error is obtained as 0.16 in this example.

Relationship and affecting factors on type I and type II errors

1. related change of both errors.

Type I and type II errors are closely related. If all other conditions are the same, the reduction of Type I error level accompanies the increase of type II error level. When we decrease alpha error level from 0.05 to 0.01, the critical value moves outward to around ± 2.58. As the result, beta level will increase to around 0.34 in Figure 1 , if all other conditions are the same. Conversely, moving the determinant line to the left side will cause both decrease of type II error level and increase of type I error level. Therefore, the determination of error level should be a procedure considering both error types simultaneously.

2. Effect of distance between H 0 and H 1

If H 1 suggest a bigger center, e.g., 4 instead of 3, then the distribution moves to the right. If we fix the alpha level as 0.05, then the beta level gets smaller than ever. If the center value is 4 then z value is -2 and the area less than -2 in the standard normal distribution is obtained as 0.025. If all other condition is the same, the increase of distance between H 0 and H 1 decrease the beta error level.

3. Effect of sample size

Then how do we maintain both error levels lower? Increasing the sample size is one answer, because a large sample size reduce standard error (standard deviation/√sample size) when all other conditions retained as the same. Smaller standard error can produce more concentrated sampling distributions with slender curve under both null and alternative hypothesis and the consequent overlapping area gets smaller. As sample size increases, we can get satisfactory low levels of both alpha and beta errors.

Statistical significance level

Type I error level of is often called a significance level. In a statistical testing, we reject the null hypothesis when the observed value from the dataset is located in area of extreme 0.05 and conclude there is evidence of difference from the null hypothesis when we set the alpha level at 0.05. As we consider the difference over the level is statistically significant, the level is called a significance level. Sometimes the significance level is expressed using p value, e.g., "Statistical significance was determined as p < 0.05." P value is defined as the probability of obtaining the observed value or more extreme values when the null hypothesis is true. Figure 2 shows that type I error level at 0.05 and a two-sided p value of 0.02. The observed z value 2.3 was located in the rejection region with p value of 0.02, which is smaller than the significance level 0.05. Small p value indicates that the probability of observing such a dataset or more extreme cases is very low under the assumed null hypothesis.

An external file that holds a picture, illustration, etc.
Object name is rde-40-249-g002.jpg

Statistical power

Power is the probability of rejecting a false null hypothesis, which is the other side of type II error. Power is calculated as 1- Type II error (β). In Figure 1 , type II error level is 0.16 and power is obtained as 0.84. Usually a power level of 0.8 - 0.9 is required in experimental studies. Because of the relationship between type I and type II errors, we need to keep a minimum required level of both errors. Sufficient sample size is needed to keep the type I error low as 0.05 or 0.01 and the power high as 0.8 or 0.9.

  • Prompt Library
  • DS/AI Trends
  • Stats Tools
  • Interview Questions
  • Generative AI
  • Machine Learning
  • Deep Learning

Type I & Type II Errors in Hypothesis Testing: Examples

type 1 hypothesis testing error

Table of Contents

What is a Type I Error?

When doing hypothesis testing, one ends up incorrectly rejecting the null hypothesis (default state of being) when in reality it holds true. The probability of rejecting a null hypothesis when it actually holds good is called as Type I error . Generally, a higher Type I error triggers eyebrows because this indicates that there is evidence against the default state of being. This essentially means that unexpected outcomes or alternate hypotheses can be true. Thus, it is recommended that one should aim to keep Type I errors as small as possible. Type I error is also called as “ false positive “.

Lets try and understand type I error with the help of person held guilty or otherwise given the fact that he is innocent. The claim made or the hypothesis is that the person has committed a crime or is guilty. The null hypothesis will be that the person is not guilty or innocent. Based on the evidence gathered, the null hypothesis that the person is not guilty gets rejected. This means that the person is held guilty. However, the rejection of null hypothesis is false. This means that the person is held guilty although he/she was not guilty. In other words, the innocent person is convicted. This is an example of Type I error.

In order to achieve the lower Type I error, the hypothesis testing assigns a fairly small value to the significance level. Common values for significance level are 0.05 and 0.01, although, on average scenarios, 0.05 is used. Mathematically speaking, if the significance level is set to be 0.05, it is acceptable/OK to falsely or incorrectly reject the Null Hypothesis for 5% of the time.

Type I Error & House on Fire

Whether the house is on fire?

Type I Error & Covid-19 Diagnosis

covid-19 Type I Type II Error

What is a Type II Error?

Type ii error & house on fire, type ii error & covid-19 diagnosis.

In the case of Covid-19 example, if the person having a breathing problem fails to reject the Null hypothesis , and does not go for Covid-19 diagnostic tests when he/she should actually have rejected it. This may prove fatal to life in case the person is actually suffering from Covid-19. Type II errors can turn out to be very fatal and expensive.

Type I Error & Type II Error Explained with Diagram

Type I Error Type II Error

Given the diagram above, one could observe the following two scenarios:

  • Type I Error : When one rejects the Null Hypothesis (H0 – Default state of being) given that H0 is true, one commits a Type I error. It can also be termed as false positive.
  • Type II Error : When one fails to reject the Null hypothesis when it is actually false or does not hold good, one commits a Type II error. It can also be termed as a false negative.
  • In other cases when one rejects the Null Hypothesis when it is false or not true, and when fails to reject the Null hypothesis when it is true is the correct decision .

Type I Error & Type II Error: Trade-off

Ideally it is desired that both the Type I and Type II error rates should remain small. But in practice, this is extermely hard to achieve. There typically is a trade-off. The Type I error can be made small by only rejecting H0 if we are quite sure that it doesn’t hold. This would mean a very small value of significance level such as 0.01. However, this will result in an increase in the Type II error. Alternatively, The Type II error can be made small by rejecting H0 in the presence of even modest evidence that it does not hold. This can be obtained by having slightly higher value of significance level ssuch as 0.1. This will, however, cause the Type I error to be large. In practice, we typically view Type I errors as “bad” or “not good” than Type II errors, because the former involves declaring a scientific finding that is not correct. Hence, when the hypothesis testing is performed, What is desired is typically a low Type I error rate — e.g., at most α = 0.05,  while trying to make the Type II error small (or, equivalently, the power large).

Understanding the difference between Type I and Type II errors can help you make more informed decisions about how to use statistics in your research. If you are looking for some resources on how to integrate these concepts into your own work, reach out to us. We would be happy to provide additional training or answer any questions that may arise!

Recent Posts

Ajitesh Kumar

  • Invoke Python ML Models from Other Applications – Examples - September 18, 2024
  • Principal Component Analysis (PCA) & Feature Extraction – Examples - September 17, 2024
  • Content-based Recommender System: Python Example - September 17, 2024

Ajitesh Kumar

Leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

  • Search for:

ChatGPT Prompts (250+)

  • Generate Design Ideas for App
  • Expand Feature Set of App
  • Create a User Journey Map for App
  • Generate Visual Design Ideas for App
  • Generate a List of Competitors for App
  • Invoke Python ML Models from Other Applications – Examples
  • Principal Component Analysis (PCA) & Feature Extraction – Examples
  • Content-based Recommender System: Python Example
  • Recommender Systems in Machine Learning: Examples
  • Difference: Binary vs Multiclass vs Multilabel Classification

Data Science / AI Trends

  • • Sentiment Analysis Real World Examples
  • • Prepend any arxiv.org link with talk2 to load the paper into a responsive chat application
  • • Custom LLM and AI Agents (RAG) On Structured + Unstructured Data - AI Brain For Your Organization
  • • Guides, papers, lecture, notebooks and resources for prompt engineering
  • • Common tricks to make LLMs efficient and stable

Free Online Tools

  • Create Scatter Plots Online for your Excel Data
  • Histogram / Frequency Distribution Creation Tool
  • Online Pie Chart Maker Tool
  • Z-test vs T-test Decision Tool
  • Independent samples t-test calculator

Recent Comments

I found it very helpful. However the differences are not too understandable for me

Very Nice Explaination. Thankyiu very much,

in your case E respresent Member or Oraganization which include on e or more peers?

Such a informative post. Keep it up

Thank you....for your support. you given a good solution for me.

  • School Guide
  • Mathematics
  • Number System and Arithmetic
  • Trigonometry
  • Probability
  • Mensuration
  • Maths Formulas
  • Class 8 Maths Notes
  • Class 9 Maths Notes
  • Class 10 Maths Notes
  • Class 11 Maths Notes
  • Class 12 Maths Notes

Type I and Type II Errors

Type I and Type II Errors are central for hypothesis testing in general, which subsequently impacts various aspects of science including but not limited to statistical analysis. False discovery refers to a Type I error where a true Null Hypothesis is incorrectly rejected. On the other end of the spectrum, Type II errors occur when a true null hypothesis fails to get rejected.

In this article, we will discuss Type I and Type II Errors in detail, including examples and differences.

Type-I-and-Type-II-Errors

Table of Content

Type I and Type II Error in Statistics

What is error, what is type i error (false positive), what is type ii error (false negative), type i and type ii errors – table, type i and type ii errors examples, examples of type i error, examples of type ii error, factors affecting type i and type ii errors, how to minimize type i and type ii errors, difference between type i and type ii errors.

In statistics , Type I and Type II errors represent two kinds of errors that can occur when making a decision about a hypothesis based on sample data. Understanding these errors is crucial for interpreting the results of hypothesis tests.

In the statistics and hypothesis testing , an error refers to the emergence of discrepancies between the result value based on observation or calculation and the actual value or expected value.

The failures may happen in different factors, such as turbulent sampling, unclear implementation, or faulty assumptions. Errors can be of many types, such as

  • Measurement Error
  • Calculation Error
  • Human Error
  • Systematic Error
  • Random Error

In hypothesis testing, it is often clear which kind of error is the problem, either a Type I error or a Type II one.

Type I error, also known as a false positive , occurs in statistical hypothesis testing when a null hypothesis that is actually true is rejected. In other words, it’s the error of incorrectly concluding that there is a significant effect or difference when there isn’t one in reality.

In hypothesis testing, there are two competing hypotheses:

  • Null Hypothesis (H 0 ): This hypothesis represents a default assumption that there is no effect, no difference, or no relationship in the population being studied.
  • Alternative Hypothesis (H 1 ): This hypothesis represents the opposite of the null hypothesis. It suggests that there is a significant effect, difference, or relationship in the population.

A Type I error occurs when the null hypothesis is rejected based on the sample data, even though it is actually true in the population.

Type II error, also known as a false negative , occurs in statistical hypothesis testing when a null hypothesis that is actually false is not rejected. In other words, it’s the error of failing to detect a significant effect or difference when one exists in reality.

A Type II error occurs when the null hypothesis is not rejected based on the sample data, even though it is actually false in the population. In other words, it’s a failure to recognize a real effect or difference.

Suppose a medical researcher is testing a new drug to see if it’s effective in treating a certain condition. The null hypothesis (H 0 ) states that the drug has no effect, while the alternative hypothesis (H 1 ) suggests that the drug is effective. If the researcher conducts a statistical test and fails to reject the null hypothesis (H 0 ), concluding that the drug is not effective, when in fact it does have an effect, this would be a Type II error.

The table given below shows the relationship between True and False:

Error Type Description Also Known as When It Occurs
Type I Rejecting a true null hypothesis False Positive You believe there is an effect or difference when there isn’t
Type II Failing to reject a false null hypothesis False Negative You believe there is no effect or difference when there is

Some of examples of type I error include:

  • Medical Testing : Suppose a medical test is designed to diagnose a particular disease. The null hypothesis ( H 0 ) is that the person does not have the disease, and the alternative hypothesis ( H 1 ) is that the person does have the disease. A Type I error occurs if the test incorrectly indicates that a person has the disease (rejects the null hypothesis) when they do not actually have it.
  • Legal System : In a criminal trial, the null hypothesis ( H 0 ) is that the defendant is innocent, while the alternative hypothesis ( H 1 ) is that the defendant is guilty. A Type I error occurs if the jury convicts the defendant (rejects the null hypothesis) when they are actually innocent.
  • Quality Control : In manufacturing, quality control inspectors may test products to ensure they meet certain specifications. The null hypothesis ( H 0 ) is that the product meets the required standard, while the alternative hypothesis ( H 1 ) is that the product does not meet the standard. A Type I error occurs if a product is rejected (null hypothesis is rejected) as defective when it actually meets the required standard.

Using the same H 0 and H 1 , some examples of type II error include:

  • Medical Testing : In a medical test designed to diagnose a disease, a Type II error occurs if the test incorrectly indicates that a person does not have the disease (fails to reject the null hypothesis) when they actually do have it.
  • Legal System : In a criminal trial, a Type II error occurs if the jury acquits the defendant (fails to reject the null hypothesis) when they are actually guilty.
  • Quality Control : In manufacturing, a Type II error occurs if a defective product is accepted (fails to reject the null hypothesis) as meeting the required standard.

Some of the common factors affecting errors are:

  • Sample Size: In statistical hypothesis testing, larger sample sizes generally reduce the probability of both Type I and Type II errors. With larger samples, the estimates tend to be more precise, resulting in more accurate conclusions.
  • Significance Level: The significance level (α) in hypothesis testing determines the probability of committing a Type I error. Choosing a lower significance level reduces the risk of Type I error but increases the risk of Type II error, and vice versa.
  • Effect Size: The magnitude of the effect or difference being tested influences the probability of Type II error. Smaller effect sizes are more challenging to detect, increasing the likelihood of failing to reject the null hypothesis when it’s false.
  • Statistical Power: The power of Statistics (1 – β) dictates that the opportunity for rejecting a wrong null hypothesis is based on the inverse of the chance of committing a Type II error. The power level of the test rises, thus a chance of the Type II error dropping.

To minimize Type I and Type II errors in hypothesis testing, there are several strategies that can be employed based on the information from the sources provided:

  • By setting a lower significance level, the chances of incorrectly rejecting the null hypothesis decrease, thus minimizing Type I errors.
  • Increasing the sample size reduces the variability of the statistic, making it less likely to fall in the non-rejection region when it should be rejected, thus minimizing Type II errors.

Some of the key differences between Type I and Type II Errors are listed in the following table:

Aspect Type I Error Type II Error
Definition Incorrectly rejecting a true null hypothesis Failing to reject a false null hypothesis
Also known as False positive False negative
Probability symbol α (alpha) β (beta)
Example Concluding that a person has a disease when they do not (false alarm) Concluding that a person does not have a disease when they do (missed diagnosis)
Prevention strategy Adjusting the significance level (α) Increasing sample size or effect size (to increase power)

Conclusion – Type I and Type II Errors

In conclusion, type I errors occur when we mistakenly reject a true null hypothesis, while Type II errors happen when we fail to reject a false null hypothesis. Being aware of these errors helps us make more informed decisions, minimizing the risks of false conclusions.

People Also Read:

Difference between Null and Alternate Hypothesis Z-Score Table

Type I and Type II Errors – FAQs

What is type i error.

Type I Error occurs when a null hypothesis is incorrectly rejected, indicating a false positive result, concluding that there is an effect or difference when there isn’t one.

What is an Example of a Type 1 Error?

An example of Type I Error is that convicting an innocent person (null hypothesis: innocence) based on insufficient evidence, incorrectly rejecting the null hypothesis of innocence.

What is Type II Error?

Type II Error happens when a null hypothesis is incorrectly accepted, failing to detect a true effect or difference when one actually exists.

What is an Example of a Type 2 Error?

An example of type 2 error is that failing to diagnose a disease in a patient (null hypothesis: absence of disease) despite them actually having the disease, incorrectly failing to reject the null hypothesis.

What is the difference between Type 1 and Type 2 Errors?

Type I error involves incorrectly rejecting a true null hypothesis, while Type II error involves failing to reject a false null hypothesis. In simpler terms, Type I error is a false positive, while Type II error is a false negative.

What is Type 3 Error?

Type 3 Error is not a standard statistical term. It’s sometimes informally used to describe situations where the researcher correctly rejects the null hypothesis but for the wrong reason, often due to a flaw in the experimental design or analysis.

How are Type I and Type II Errors related to hypothesis testing?

In hypothesis testing, Type I Error relates to the significance level (α), which represents the probability of rejecting a true null hypothesis. Type II Error relates to the power of the test (β), which represents the probability of failing to reject a false null hypothesis.

What are some examples of Type I and Type II Errors?

Type I Error: Rejecting a null hypothesis that a new drug has no side effects when it actually does (false positive). Type II Error: Failing to reject a null hypothesis that a new drug has no effect when it actually does (false negative).

How can one minimize Type I and Type II Errors?

Type I Error can be minimized by choosing a lower significance level (α) for hypothesis testing. Type II Error can be minimized by increasing the sample size or improving the sensitivity of the test.

What is the relationship between Type I and Type II Errors?

There is often a trade-off between Type I and Type II Errors. Decreasing the probability of one type of error typically increases the probability of the other.

How do Type I and Type II Errors impact decision-making?

Type I Errors can lead to false conclusions, such as mistakenly believing a treatment is effective when it’s not. Type II Errors can result in missed opportunities, such as failing to identify an effective treatment.

In which fields are Type I and Type II Errors commonly encountered?

Type I and Type II Errors are encountered in various fields, including medical research, quality control, criminal justice, and market research.

author

Please Login to comment...

Similar reads.

  • Best External Hard Drives for Mac in 2024: Top Picks for MacBook Pro, MacBook Air & More
  • How to Watch NFL Games Live Streams Free
  • OpenAI o1 AI Model Launched: Explore o1-Preview, o1-Mini, Pricing & Comparison
  • How to Merge Cells in Google Sheets: Step by Step Guide
  • #geekstreak2024 – 21 Days POTD Challenge Powered By Deutsche Bank

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

Have a thesis expert improve your writing

Check your thesis for plagiarism in 10 minutes, generate your apa citations for free.

  • Knowledge Base
  • Type I & Type II Errors | Differences, Examples, Visualizations

Type I & Type II Errors | Differences, Examples, Visualizations

Published on 18 January 2021 by Pritha Bhandari . Revised on 2 February 2023.

In statistics , a Type I error is a false positive conclusion, while a Type II error is a false negative conclusion.

Making a statistical decision always involves uncertainties, so the risks of making these errors are unavoidable in hypothesis testing .

The probability of making a Type I error is the significance level , or alpha (α), while the probability of making a Type II error is beta (β). These risks can be minimized through careful planning in your study design.

  • Type I error (false positive) : the test result says you have coronavirus, but you actually don’t.
  • Type II error (false negative) : the test result says you don’t have coronavirus, but you actually do.

Table of contents

Error in statistical decision-making, type i error, type ii error, trade-off between type i and type ii errors, is a type i or type ii error worse, frequently asked questions about type i and ii errors.

Using hypothesis testing, you can make decisions about whether your data support or refute your research predictions with null and alternative hypotheses .

Hypothesis testing starts with the assumption of no difference between groups or no relationship between variables in the population—this is the null hypothesis . It’s always paired with an alternative hypothesis , which is your research prediction of an actual difference between groups or a true relationship between variables .

In this case:

  • The null hypothesis (H 0 ) is that the new drug has no effect on symptoms of the disease.
  • The alternative hypothesis (H 1 ) is that the drug is effective for alleviating symptoms of the disease.

Then , you decide whether the null hypothesis can be rejected based on your data and the results of a statistical test . Since these decisions are based on probabilities, there is always a risk of making the wrong conclusion.

  • If your results show statistical significance , that means they are very unlikely to occur if the null hypothesis is true. In this case, you would reject your null hypothesis. But sometimes, this may actually be a Type I error.
  • If your findings do not show statistical significance, they have a high chance of occurring if the null hypothesis is true. Therefore, you fail to reject your null hypothesis. But sometimes, this may be a Type II error.

Type I and Type II error in statistics

A Type I error means rejecting the null hypothesis when it’s actually true. It means concluding that results are statistically significant when, in reality, they came about purely by chance or because of unrelated factors.

The risk of committing this error is the significance level (alpha or α) you choose. That’s a value that you set at the beginning of your study to assess the statistical probability of obtaining your results ( p value).

The significance level is usually set at 0.05 or 5%. This means that your results only have a 5% chance of occurring, or less, if the null hypothesis is actually true.

If the p value of your test is lower than the significance level, it means your results are statistically significant and consistent with the alternative hypothesis. If your p value is higher than the significance level, then your results are considered statistically non-significant.

To reduce the Type I error probability, you can simply set a lower significance level.

Type I error rate

The null hypothesis distribution curve below shows the probabilities of obtaining all possible results if the study were repeated with new samples and the null hypothesis were true in the population .

At the tail end, the shaded area represents alpha. It’s also called a critical region in statistics.

If your results fall in the critical region of this curve, they are considered statistically significant and the null hypothesis is rejected. However, this is a false positive conclusion, because the null hypothesis is actually true in this case!

Type I error rate

A Type II error means not rejecting the null hypothesis when it’s actually false. This is not quite the same as “accepting” the null hypothesis, because hypothesis testing can only tell you whether to reject the null hypothesis.

Instead, a Type II error means failing to conclude there was an effect when there actually was. In reality, your study may not have had enough statistical power to detect an effect of a certain size.

Power is the extent to which a test can correctly detect a real effect when there is one. A power level of 80% or higher is usually considered acceptable.

The risk of a Type II error is inversely related to the statistical power of a study. The higher the statistical power, the lower the probability of making a Type II error.

Statistical power is determined by:

  • Size of the effect : Larger effects are more easily detected.
  • Measurement error : Systematic and random errors in recorded data reduce power.
  • Sample size : Larger samples reduce sampling error and increase power.
  • Significance level : Increasing the significance level increases power.

To (indirectly) reduce the risk of a Type II error, you can increase the sample size or the significance level.

Type II error rate

The alternative hypothesis distribution curve below shows the probabilities of obtaining all possible results if the study were repeated with new samples and the alternative hypothesis were true in the population .

The Type II error rate is beta (β), represented by the shaded area on the left side. The remaining area under the curve represents statistical power, which is 1 – β.

Increasing the statistical power of your test directly decreases the risk of making a Type II error.

Type II error rate

The Type I and Type II error rates influence each other. That’s because the significance level (the Type I error rate) affects statistical power, which is inversely related to the Type II error rate.

This means there’s an important tradeoff between Type I and Type II errors:

  • Setting a lower significance level decreases a Type I error risk, but increases a Type II error risk.
  • Increasing the power of a test decreases a Type II error risk, but increases a Type I error risk.

This trade-off is visualized in the graph below. It shows two curves:

  • The null hypothesis distribution shows all possible results you’d obtain if the null hypothesis is true. The correct conclusion for any point on this distribution means not rejecting the null hypothesis.
  • The alternative hypothesis distribution shows all possible results you’d obtain if the alternative hypothesis is true. The correct conclusion for any point on this distribution means rejecting the null hypothesis.

Type I and Type II errors occur where these two distributions overlap. The blue shaded area represents alpha, the Type I error rate, and the green shaded area represents beta, the Type II error rate.

By setting the Type I error rate, you indirectly influence the size of the Type II error rate as well.

Type I and Type II error

It’s important to strike a balance between the risks of making Type I and Type II errors. Reducing the alpha always comes at the cost of increasing beta, and vice versa .

For statisticians, a Type I error is usually worse. In practical terms, however, either type of error could be worse depending on your research context.

A Type I error means mistakenly going against the main statistical assumption of a null hypothesis. This may lead to new policies, practices or treatments that are inadequate or a waste of resources.

In contrast, a Type II error means failing to reject a null hypothesis. It may only result in missed opportunities to innovate, but these can also have important practical consequences.

In statistics, a Type I error means rejecting the null hypothesis when it’s actually true, while a Type II error means failing to reject the null hypothesis when it’s actually false.

The risk of making a Type I error is the significance level (or alpha) that you choose. That’s a value that you set at the beginning of your study to assess the statistical probability of obtaining your results ( p value ).

To reduce the Type I error probability, you can set a lower significance level.

The risk of making a Type II error is inversely related to the statistical power of a test. Power is the extent to which a test can correctly detect a real effect when there is one.

To (indirectly) reduce the risk of a Type II error, you can increase the sample size or the significance level to increase statistical power.

Statistical significance is a term used by researchers to state that it is unlikely their observations could have occurred under the null hypothesis of a statistical test . Significance is usually denoted by a p -value , or probability value.

Statistical significance is arbitrary – it depends on the threshold, or alpha value, chosen by the researcher. The most common threshold is p < 0.05, which means that the data is likely to occur less than 5% of the time under the null hypothesis .

When the p -value falls below the chosen alpha value, then we say the result of the test is statistically significant.

In statistics, power refers to the likelihood of a hypothesis test detecting a true effect if there is one. A statistically powerful test is more likely to reject a false negative (a Type II error).

If you don’t ensure enough power in your study, you may not be able to detect a statistically significant result even when it has practical significance. Your study might not have the ability to answer your research question.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2023, February 02). Type I & Type II Errors | Differences, Examples, Visualizations. Scribbr. Retrieved 18 September 2024, from https://www.scribbr.co.uk/stats/type-i-and-type-ii-error/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

The Difference Between Type I and Type II Errors in Hypothesis Testing

  • Inferential Statistics
  • Statistics Tutorials
  • Probability & Games
  • Descriptive Statistics
  • Applications Of Statistics
  • Math Tutorials
  • Pre Algebra & Algebra
  • Exponential Decay
  • Worksheets By Grade
  • Ph.D., Mathematics, Purdue University
  • M.S., Mathematics, Purdue University
  • B.A., Mathematics, Physics, and Chemistry, Anderson University

The statistical practice of hypothesis testing is widespread not only in statistics but also throughout the natural and social sciences. When we conduct a hypothesis test there a couple of things that could go wrong. There are two kinds of errors, which by design cannot be avoided, and we must be aware that these errors exist. The errors are given the quite pedestrian names of type I and type II errors. What are type I and type II errors, and how we distinguish between them? Briefly:

  • Type I errors happen when we reject a true null hypothesis
  • Type II errors happen when we fail to reject a false null hypothesis

We will explore more background behind these types of errors with the goal of understanding these statements.

Hypothesis Testing

The process of hypothesis testing can seem to be quite varied with a multitude of test statistics. But the general process is the same. Hypothesis testing involves the statement of a null hypothesis and the selection of a level of significance . The null hypothesis is either true or false and represents the default claim for a treatment or procedure. For example, when examining the effectiveness of a drug, the null hypothesis would be that the drug has no effect on a disease.

After formulating the null hypothesis and choosing a level of significance, we acquire data through observation. Statistical calculations tell us whether or not we should reject the null hypothesis.

In an ideal world, we would always reject the null hypothesis when it is false, and we would not reject the null hypothesis when it is indeed true. But there are two other scenarios that are possible, each of which will result in an error.

Type I Error

The first kind of error that is possible involves the rejection of a null hypothesis that is actually true. This kind of error is called a type I error and is sometimes called an error of the first kind.

Type I errors are equivalent to false positives. Let’s go back to the example of a drug being used to treat a disease. If we reject the null hypothesis in this situation, then our claim is that the drug does, in fact, have some effect on a disease. But if the null hypothesis is true, then, in reality, the drug does not combat the disease at all. The drug is falsely claimed to have a positive effect on a disease.

Type I errors can be controlled. The value of alpha, which is related to the level of significance that we selected has a direct bearing on type I errors. Alpha is the maximum probability that we have a type I error. For a 95% confidence level, the value of alpha is 0.05. This means that there is a 5% probability that we will reject a true null hypothesis. In the long run, one out of every twenty hypothesis tests that we perform at this level will result in a type I error.

Type II Error

The other kind of error that is possible occurs when we do not reject a null hypothesis that is false. This sort of error is called a type II error and is also referred to as an error of the second kind.

Type II errors are equivalent to false negatives. If we think back again to the scenario in which we are testing a drug, what would a type II error look like? A type II error would occur if we accepted that the drug had no effect on a disease, but in reality, it did.

The probability of a type II error is given by the Greek letter beta. This number is related to the power or sensitivity of the hypothesis test, denoted by 1 – beta.

How to Avoid Errors

Type I and type II errors are part of the process of hypothesis testing. Although the errors cannot be completely eliminated, we can minimize one type of error.

Typically when we try to decrease the probability one type of error, the probability for the other type increases. We could decrease the value of alpha from 0.05 to 0.01, corresponding to a 99% level of confidence . However, if everything else remains the same, then the probability of a type II error will nearly always increase.

Many times the real world application of our hypothesis test will determine if we are more accepting of type I or type II errors. This will then be used when we design our statistical experiment.

  • Type I and Type II Errors in Statistics
  • What Level of Alpha Determines Statistical Significance?
  • What Is the Difference Between Alpha and P-Values?
  • The Runs Test for Random Sequences
  • What 'Fail to Reject' Means in a Hypothesis Test
  • How to Construct a Confidence Interval for a Population Proportion
  • How to Find Critical Values with a Chi-Square Table
  • Null Hypothesis and Alternative Hypothesis
  • An Example of a Hypothesis Test
  • What Is ANOVA?
  • Degrees of Freedom for Independence of Variables in Two-Way Table
  • How to Find Degrees of Freedom in Statistics
  • Confidence Interval for the Difference of Two Population Proportions
  • An Example of Chi-Square Test for a Multinomial Experiment
  • Example of a Permutation Test
  • How to Calculate the Margin of Error

Six Sigma Daily

Type I and Type II Errors in Hypothesis Testing

There are four possible outcomes when making hypothesis test decisions from sample data. Two of these outcomes are correct in that the sample accurately represents the population and leads to a correct conclusion, and two are incorrect, as shown in the following figure:

' src=

TYPE I ERROR (or α Risk or Producer’s Risk) In hypothesis testing terms, α risk is the risk of rejecting the null hypothesis when it is really true and therefore should not be rejected. In other words, the alternative hypothesis is supported when there is inadequate statistical evidence for doing so (too much risk). This can be thought of as overreacting to data results that might be due just to chance alone.

The most commonly used level of β risk is .05, or 5%. This level of β risk means that there is a 5% chance that the sample results are due to chance alone, so there is a 5% chance that rejecting the null hypothesis (supporting the alternative hypothesis) will be an incorrect decision.

TYPE II ERROR (or β Risk or Consumer’s Risk) In hypothesis testing terms, β risk is the risk of failing to reject the null hypothesis when it is really false and therefore should be rejected. In other words, the alternative hypothesis is not supported even though there is adequate statistical evidence to show that supporting it meets the acceptable levels of risk. This can be thought of as underreacting to data results that are probably real and not due just to chance alone.

The most commonly used level of β risk is .10, or 10%. This level of β risk means that there is a 10% chance that the sample results are not due to chance alone, so there is a 10% chance that failing to reject the null hypothesis (failing to support the alternative hypothesis) will be an incorrect decision.

Six Sigma Terminology

COMMENTS

  1. Type I & Type II Errors

    Learn what Type I and Type II errors are in hypothesis testing, how they differ, and how to minimize them. See examples, visualizations, and tips for choosing significance level and power.

  2. Types I & Type II Errors in Hypothesis Testing

    Learn about the causes and consequences of Type I and Type II errors in hypothesis testing, also known as alpha and beta errors. Type I errors are false positives that occur when the null hypothesis is true, while Type II errors are false negatives that occur when the alternative hypothesis is true.

  3. Type 1 Error Overview & Example

    A type 1 error is rejecting a true null hypothesis in a hypothesis test, which is a false positive. The probability of a type 1 error is the significance level (α ...

  4. Type I and type II errors

    Learn the definitions and examples of type I and type II errors in statistical hypothesis testing, also known as false positive and false negative. Find out how to minimize these errors and improve the quality of hypothesis test.

  5. Type 1 and Type 2 Errors in Statistics

    Learn what type 1 and type 2 errors are in statistics, how they relate to significance testing and p-values, and why they matter for research and decision-making. See examples, implications, and FAQs on this topic.

  6. 9.3: Outcomes and the Type I and Type II Errors

    Learn the definitions, probabilities, and examples of Type I and II errors in hypothesis testing. Type I error is rejecting a true null hypothesis, and Type II error ...

  7. 6.1

    Learn the definitions and examples of Type I and Type II errors in hypothesis testing. A Type II error is failing to reject a false null hypothesis, such as ...

  8. 9.2: Type I and Type II Errors

    Learn the definitions, examples, and consequences of Type I and Type II errors in hypothesis testing. Find out how to calculate and control the probabilities of these errors and the power of the test.

  9. PDF Type I and Type II errors

    Learn the definitions and examples of type I and type II errors in hypothesis testing, and how to control the false discovery rate (FDR) in multiple hypothesis testing. The web page also explains the Bonferroni correction and the q-value for FDR estimation.

  10. 8.2: Type I and II Errors

    Learn how to quantify and control the two types of errors in hypothesis testing: rejecting a true null hypothesis (type I error) and failing to reject a false null hypothesis (type II error). See examples, diagrams, and applications in different fields of study.

  11. Hypothesis testing, type I and type II errors

    The alternative hypothesis cannot be tested directly; it is accepted by exclusion if the test of statistical significance rejects the null hypothesis. One- and two-tailed alternative hypotheses A one-tailed (or one-sided) hypothesis specifies the direction of the association between the predictor and outcome variables.

  12. Hypothesis Testing along with Type I & Type II Errors explained simply

    Note: For a two-tailed test, the z-critical values are the same used to calculate the confidence intervals. Refer this article to learn more about Confidence Interval.. At a particular α level, we have two possible outcomes in either situation(one-tailed or two-tailed). Either the sample mean(Xₑ) would lie outside of the critical region or inside the critical region.

  13. Type 1 Error: Definition, False Positives, and Examples

    A type 1 error is a false positive result that rejects a correct null hypothesis. Learn how it occurs in statistics, criminal trials, and medical testing, and how to ...

  14. A guide to type 1 errors: Examples and best practices

    Learn what type 1 errors are, why they matter, and how to avoid them in product testing. Find out the factors that contribute to type 1 errors and the best practices to minimize them.

  15. Statistical notes for clinical researchers: Type I and type II errors

    Often the null hypothesis is denoted as H 0 and the alternative hypothesis as H 1 or H a. To test a hypothesis, we collect data and measure how much the data support or contradict the null hypothesis. ... Schematic example of type I and type II errors. Figure 1 shows a schematic example of relative sampling distributions under a null hypothesis ...

  16. Type I and Type II errors: what are they and why do they matter?

    In this setting, Type I and Type II errors are fundamental concepts to help us interpret the results of the hypothesis test. 1 They are also vital components when calculating a study sample size. 2, 3 We have already briefly met these concepts in previous Research Design and Statistics articles 2, 4 and here we shall consider them in more detail.

  17. Type I & II Errors and Sample Size Calculation in Hypothesis Testing

    Photo by Scott Graham on Unsplash. In the world of statistics and data analysis, hypothesis testing is a fundamental concept that plays a vital role in making informed decisions. In this blog, we will delve deeper into hypothesis testing, specifically focusing on how to reduce type I and type II errors.We will discuss the factors that influence these errors, such as significance level, sample ...

  18. 9.2: Outcomes, Type I and Type II Errors

    9.2: Outcomes, Type I and Type II Errors. When you perform a hypothesis test, there are four possible outcomes depending on the actual truth (or falseness) of the null hypothesis H0 and the decision to reject or not. The outcomes are summarized in the following table: The four possible outcomes in the table are:

  19. Type I & Type II Errors in Hypothesis Testing: Examples

    This article describes Type I and Type II errors made due to incorrect evaluation of the outcome of hypothesis testing, based on a couple of examples such as the person comitting a crime, the house on fire, and Covid-19. You may want to note that it is key to understand type I and type II errors as these concepts will show up when we are ...

  20. Type I and Type II Errors in Statistics

    Learn the definitions, examples, and factors of Type I and Type II errors in hypothesis testing. Type I error is rejecting a true null hypothesis, while Type II error ...

  21. Type I & Type II Errors

    Learn what Type I and Type II errors are in hypothesis testing, how they differ, and how to minimize them. See examples, visualizations, and tips for choosing significance level and power.

  22. Type I vs. Type II Errors in Hypothesis Testing

    Type I errors occur when we reject a true null hypothesis, while type II errors occur when we fail to reject a false null hypothesis. Learn how to distinguish between these errors, how they are controlled by alpha and beta, and how they affect the power of a hypothesis test.

  23. Type I and Type II Errors in Hypothesis Testing

    TYPE I ERROR (or α Risk or Producer's Risk) In hypothesis testing terms, α risk is the risk of rejecting the null hypothesis when it is really true and therefore should not be rejected. In other words, the alternative hypothesis is supported when there is inadequate statistical evidence for doing so (too much risk). This can be thought of ...

  24. Sequential analysis of variance: Increasing efficiency of hypothesis

    Researchers commonly use analysis of variance (ANOVA) to statistically test results of factorial designs. Performing an a priori power analysis is crucial to ensure that the ANOVA is sufficiently powered, however, it often poses a challenge and can result in large sample sizes, especially if the expected effect size is small. Due to the high prevalence of small effect sizes in psychology ...